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We introduce a machine learning model to predict atomization energies of a diverse set of organic

molecules, based on nuclear charges and atomic positions only. The problem of solving the molecular

Schrödinger equation is mapped onto a nonlinear statistical regression problem of reduced complexity.

Regression models are trained on and compared to atomization energies computed with hybrid density-

functional theory. Cross validation over more than seven thousand organic molecules yields a mean

absolute error of�10 kcal=mol. Applicability is demonstrated for the prediction of molecular atomization

potential energy curves.
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Solving the Schrödinger equation (SE), H� ¼ E�, for
assemblies of atoms is a fundamental problem in quantum
mechanics. Alas, solutions that are exact up to numerical
precision are intractable for all but the smallest systems
with very few atoms. Hierarchies of approximations have
evolved, usually trading accuracy for computational effi-
ciency [1]. Conventionally, the external potential, defined
by a set of nuclear charges fZIg and atomic positions fRIg,
uniquely determines the HamiltonianH of any system, and
thereby the ground state’s potential energy, by optimizing

�, [2] HðfZI;RIgÞ7 ��!� E. For a diverse set of organic mole-
cules, we show that one can use machine learning (ML)

instead, fZI;RIg7 ��!ML
E. Thus, we circumvent the task of

explicitly solving the SE by training once a machine on a
finite subset of known solutions. Since many interesting
questions in physics require us to repeatedly solve the SE,
the highly competitive performance of our ML approach
may pave the way to large-scale exploration of molecular
energies in chemical compound space [3,4].

ML techniques have recently been used with success to
map the problem of solving complex physical differential
equations to statistical models. Successful attempts include
solving Fokker-Planck stochastic differential equations
[5], parametrizing interatomic force fields for fixed chemi-
cal composition [6,7], and the discovery of novel ternary
oxides for batteries [8]. Motivated by these and other
related efforts [9–12], we develop a nonlinear regression
ML model for computing molecular atomization energies
in chemical compound space [3]. Our model is based on a
measure of distance in compound space that accounts for
both stoichiometry and configurational variation. After
training, energies are predicted for new (out-of-sample)
molecular systems, differing in composition and geometry,
at negligible computational cost, i.e., milliseconds instead
of hours on a conventional CPU.While the model is trained

and tested using atomization energies calculated at the
hybrid density-functional theory (DFT) level [2,13,14],
any other training set or level of theory could be used as
a starting point for ML training. Cross validation on 7165
molecules yields a mean absolute error of 9:9 kcal=mol,
which is an order of magnitude more accurate than count-
ing bonds or semiempirical quantum chemistry.
We use a molecular generated database (GDB), a library

of nearly 109 organic molecules that are stable and
synthetically accessible according to organic chemistry
rules [15–17]. While potentially applicable to any stoichi-
ometry, as a proof of principle, we restrict ourselves to
small organic molecules. Specifically, we define a con-
trolled test bed consisting of all 7165 organic molecules
from the GDB, with up to seven ‘‘heavy’’ atoms that
contain C, N, O, or S, being saturated with hydrogen
atoms. Atomization energies range from �800 to
�2000 kcal=mol. Structural features include a rich variety
of chemistry such as double and triple bonds, (hetero)
cycles, carboxy, cyanide, amide, alcohol, and epoxy
groups. For each of the many stoichiometries, many con-
stitutional (differing chemical bonds) but no conforma-
tional isomers are part of this database. Based on the
string representation of molecules in the database, we
generated Cartesian geometries with OpenBabel [18].
Thereafter, the Perdew-Burke-Ernzerhof hybrid functional
(PBE0) [19,20] approximation to hybrid DFT in a con-
verged numerical basis, as implemented in the FHI-AIMS

code [21] (tight settings/tier2 basis set), was used to com-
pute reference atomization energies for training. Our
choice of the PBE0 hybrid functional is motivated by small
errors (< 5 kcal=mol) for thermochemistry data that in-
clude molecular atomization energies [22].
One of the most important ingredients for ML is the

choice of an appropriate data representation that reflects
prior knowledge of the application domain, i.e., a model of
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the underlying physics. A variety of such ‘‘descriptors’’ is
used by statistical methods for chem- and bioinformatics
applications [23,24]. For modeling atomization energies,
we use the same molecular information that enters the
Hamiltonian for an electronic structure calculation,
namely, the set of Cartesian coordinates, fRIg, and nuclear
charges, fZIg. Our representation consists of atomic ener-
gies and the internuclear Coulomb repulsion operator;
specifically, we represent any molecule by a ‘‘Coulomb’’
matrix M,

MIJ ¼
�
0:5Z2:4

I for I ¼ J;
ZIZJ

jRI�RJ j for I � J:
(1)

Here, off-diagonal elements correspond to the Coulomb
repulsion between atoms I and J, while diagonal elements
encode a polynomial fit of atomic energies to nuclear
charge.

Using ML, we attempt to construct a nonlinear map
between molecular characteristics and atomization ener-
gies. This requires a measure of molecular (dis)similarity
that is invariant with respect to translations, rotations, and
the index ordering of atoms. To this end, we measure the
distance between two molecules by the Euclidean norm of

their diagonalized Coulomb matrices: dðM;M0Þ ¼
dð�; �0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Ij�I � �0Ij2

q
, where � are the eigenvalues of

M in order of decreasing absolute value. For matrices that
differ in dimensionality, � of the smaller system is ex-
tended by zeros. Note that, by representing chemical com-
pound space in this way, (i) any system is uniquely
encoded because stoichiometry as well as atomic configu-
ration are explicitly accounted for, (ii) symmetrically
equivalent atoms contribute equally, (iii) the diagonalized
M is invariant with respect to atomic permutations, trans-
lations, and rotations, and (iv) the distance is continuous
with respect to small variations in interatomic distances or
nuclear charges [25]. As discussed in Ref. [26], these are
all crucial criteria for representing atomistic systems
within statistical models.

In Fig. 1, relative atomization energies, as a function of
dðM;M0Þ, and a histogram of distances are shown for all
pairs of molecules in our data set. The inset exemplifies the
distances between three molecular species, pyrrol, thio-
phene, and ethanol: Within our measure of similarity, the
nitrogen-containing aromatic heterocycle pyrrol is �10
times farther away from its sulfur-containing analogue,
thiophene, than from ethanol. This is due to the large
difference in nuclear charges between atoms from different
rows in the periodic table.

Within our ML model [27–29], the energy of a molecule
M is a sum over weighted Gaussians,

EestðMÞ ¼ XN
i¼1

�i exp

�
� 1

2�2
dðM;MiÞ2

�
; (2)

where i runs over all molecules Mi in the training set.
Regression coefficients f�ig and length-scale parameter �
are obtained from training on fMi; E

ref
i g. Note that each

training molecule i contributes to the energy not only
according to its distance, but also according to its specific
weight �i. The fEref

i g were computed at the PBE0 DFT
level of theory.
To determine f�ig, we used kernel ridge regression [28].

This regularized model limits the norm of regression co-
efficients, f�ig, thereby ensuring the transferability of the
model to new compounds. For given length scale � and
regularization parameter �, the explicit solution to the
minimization problem,

min
�

X
i

ðEestðMiÞ � Eref
i Þ2 þ �

X
i

�2
i ; (3)

is given by �¼ðKþ�IÞ�1Eref , Kij¼ exp½�dðMi;MjÞ2=
ð2�2Þ� being the kernel matrix of all training molecules and
I denoting the identity matrix.
We used stratified [30] fivefold cross validation [28,29]

for model selection and to estimate performance.
Parameters � and � were determined in an inner loop of
fivefold cross validation using a logarithmically scaling
grid. This procedure is routinely applied in machine learn-
ing and statistics to avoid overfitting and overly optimistic
error estimates.

FIG. 1 (color online). Top: Distribution of distances,
dðM;M0Þ, for all molecular pairs occurring in the first 7165
small organic molecules from the GDB [15]. The inset exem-
plifies two distances, pyrrol/ethanol and pyrrol/thiophene (N:
blue, O: red, S: yellow, C: black, and H: white). Bottom:
Absolute differences in atomization energies between M and
M0 as a function of dðM;M0Þ.
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The dependence of the cross-validated ML performance
on the number of molecules in the training set, N, is
illustrated in Fig. 2 (top). When increasing N from 500
to 7000, the mean absolute error (MAE) falls off frommore
than 17 kcal=mol to less than 10 kcal=mol. Furthermore,
the width � of the Gaussian kernel decreases from 460 to
25 on the distance scale of Fig. 1. Because of the discrete
nature of chemical space (nuclear charges can only assume
integer values), however, we do not expect continuous
coverage for N ! 1, implying that � will converge to a
small but finite value. The regularization hyperparameter �
remains small throughout, consistent with the fact that we
model noise-free numerical solutions of the approximated
Schrödinger equation. An asymptotic fit of the form

�1=
ffiffiffiffi
N

p
, based on statistical theory [28,31], suggests that

the MAE can be lowered to �7:6 kcal=mol for N ! 1. It
is remarkable that, already for the here-presented, rela-
tively small training set sizes, ML achieves errors of
roughly 1% on the relevant scale of energies, outperform-
ing bond counting or semiempirical quantum chemistry
methods. The cross-validated performance for a training
set size of N ¼ 1000 is displayed in Fig. 2 (bottom). There
is good correlation with the DFT data. For comparison,

corresponding correlations are shown for bond counting
[32] and semiempirical quantum chemistry (parametric
method PM6 [33]) computed with MOPAC [34]. While the
latter two methods exhibit a systematic shift in slope, the
inset highlights that the ML correlation accurately repro-
duces clustering and a slope of one.
Equation (2) implies that the energy of a query molecule

M can be seen as an expansion in reference molecules
fMig. The regression weights f�ig are scaled by the simi-
larity between query and reference compound as measured
by a Gaussian of the distance. Hence, �i assigns a positive
or negative weight for the energy contribution of the ith
reference molecule. Since f�ig are regression coefficients
in a nonlinear model, i.e., after a nonlinear transformation
of the training data, the resulting energy contributions are
specific to the employed training set without general im-
plications for other properties or regions of compound
space. The locality of the model is measured by �, en-
abling us to define a range outside of which reference
molecules Mi can be neglected in their contribution to
the energy. For a larger number N of training samples, a
smaller � is obtained and the model becomes more local in
chemical space (see the Supplemental Materials for quan-
tification [35]).
In order to assess transferability and applicability of our

model to chemical compound space, we use a ML model
trained on N ¼ 1000 molecules (model 1k). The training
set of model 1k contains all small molecules with 3 to 5
heavy atoms and a randomized stratified selection of larger
compounds covering the entire energy range. The thousand
Coulomb matrices corresponding to the OpenBabel con-
figurations were included, as well as four additional
Coulomb matrices per molecule. These additional matrices
were scaled in order to represent the repulsive wall, the
dissociative limit, and the energy minimum at f ¼ 1
[36,37]. All predictions are made for molecules that were
not used during training of the model.
For testing the transferability, we applied the 1k model

to the remaining 6k molecules. The calculations yield
errors that hardly change from the estimated performance
in the training with a MAE of 15:2 kcal=mol. For the
selected molecular subset of the seven thousand smallest
molecules in the GDB [15], we therefore conclude that
training on 15% of the molecules permits predictions of
atomization energies for the remaining 85% with an accu-
racy of roughly 15 kcal=mol.
For probing its applicability, we investigated whether

the 1k model can also be useful beyond the equilibrium
geometries. Specifically, we calculated the functional de-
pendence of atomization energies on scaling Cartesian
geometries by a factor, f. From the 6k molecules (not
used for training), we picked four chemically diverse spe-
cies. Specifically, these molecules contain single bonds and
branching only (C7H16), a double bond (C6H12), triple
bonds including nitrogen (C6NH5), and a sulfur-containing

FIG. 2 (color online). Top: Cross-validated ML errors as a
function of the number of molecules in the training set, N.
Bottom: For N ¼ 1000, correlation of DFT-PBE0 [19,20] results
(Eref) with ML (cross-validated) based estimates (Eest) of atom-
ization energies. Correlations for bond counting [32] and semi-
empirical quantum chemistry (PM6 [33]) are also shown.
Corresponding root mean square error (RMSE)/mean absolute
error (MAE) for bond counting, PM6, and ML are 75:0=71:0,
75:1=73:1, and 30:1=14:9 kcal=mol, respectively.
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cycle with a hydroxy group (C4SH3OH). The resulting ML
atomization energy curves (Fig. 3) correctly distinguish
between the molecules, closely reproduce the DFT energy
at f ¼ 1, and appear continuous and differentiable
throughout relevant bonding distances. For comparison,
corresponding DFT potential curves are also displayed.
While their well depth and position can be compared to
the ML curve, their repulsive wall and dissociative limit
was not used for training. Since DFT is a single-
determinant theory, it does not reproduce the molecular
dissociation limit properly and does not converge to the
sum of atomic energies for large f. On the other hand, our
ML model converges to the right dissociation limit by
construction. Albeit significantly overestimating the posi-
tion of the well depth in the case of C4SH3OH and C6NH5,
the MLmodel is in very good agreement with the DFT data
for the larger molecules. This might be due to the fact that,
in the total set, larger molecules are more frequent than
smaller molecules. Overall, the ML model is in good
agreement with the correct physics (single and differentia-
ble well depth of reasonable magnitude and position) as
represented by the DFT potential curves. The four ML
curves deviate from their dissociative and repulsive limit
[Eðf ¼ 2=3Þ ¼ Eðf ¼ 3Þ ¼ 0] used during training at
most by 20 kcal=mol at f ¼ 2=3 and by 8 kcal=mol at
f ¼ 3. We reiterate that, while the DFT curves had to be
calculated explicitly for these four molecules, the ML
curves correspond to analytical predictions based on a
training set with 1000 other molecules.

We have developed a ML approach for modeling atom-
ization energies across molecular compound space. For
larger training sets, N � 1000, the accuracy of the ML
model becomes competitive with mean-field electronic
structure theory—at a fraction of the computational cost.
We find good performance when making predictions for
unseen organic molecules (transferability) and when pre-
dicting atomization energies for distorted equilibrium

geometries. Our representation of molecules as Coulomb
matrices is inspired by the nuclear repulsion term in the
molecular Hamiltonian and free atom energies. Future
extensions of our approach might be used for geometry
relaxation, chemical reactions [38], molecular dynamics in
various ensembles [39], or rational compound design ap-
plications [40–42]. Finally, our results suggest that the
Coulomb matrix, or improvements thereof, could be of
interest as a descriptor beyond the presented application.
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Phys. Rev. Lett. 104, 136403 (2010).

[7] C.M. Handley and P. L. A. Popelier, J. Chem. Theory
Comput. 5, 1474 (2009).

[8] G. Hautier, C. C. Fischer, A. Jain, T. Mueller, and G.
Ceder, Chem. Mater. 22, 3762 (2010).

[9] A. Brown, B. J. Braams, K. Christoffel, Z. Jin, and J.M.
Bowman, J. Chem. Phys. 119, 8790 (2003).

[10] S. Lorenz, A. Gross, and M. Scheffler, Chem. Phys. Lett.
395, 210 (2004).

[11] J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401
(2007).

[12] J. Behler, R. Martonak, D. Donadio, and M. Parrinello,
Phys. Rev. Lett. 100, 185501 (2008).

[13] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[14] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
[15] L. C. Blum and J.-L. Reymond, J. Am. Chem. Soc. 131,

8732 (2009).
[16] T. Fink, H. Bruggesser, and J.-L. Reymond, Angew.

Chem., Int. Ed. Engl. 44, 1504 (2005).

FIG. 3 (color online). Energy of atomization curves of four
molecules containing single bonds and branching only (C7H16),
a double bond (C6H12), triple bonds including nitrogen (C6NH5),
and a sulfur-containing cycle with a hydroxy group (C4SH3OH).
(From bottom to top in insets: black: Carbon; blue: Nitrogen;
yellow: Sulfur; red: Oxygen; white: Hydrogen) (DFT-PBE0 and
ML model 1k).

PRL 108, 058301 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

3 FEBRUARY 2012

058301-4

http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1038/432823a
http://dx.doi.org/10.1038/432823a
http://dx.doi.org/10.1063/1.2338537
http://dx.doi.org/10.1063/1.2338537
http://dx.doi.org/10.1137/070696325
http://dx.doi.org/10.1137/070696325
http://dx.doi.org/10.1103/PhysRevLett.104.136403
http://dx.doi.org/10.1021/ct800468h
http://dx.doi.org/10.1021/ct800468h
http://dx.doi.org/10.1021/cm100795d
http://dx.doi.org/10.1063/1.1622379
http://dx.doi.org/10.1016/j.cplett.2004.07.076
http://dx.doi.org/10.1016/j.cplett.2004.07.076
http://dx.doi.org/10.1103/PhysRevLett.98.146401
http://dx.doi.org/10.1103/PhysRevLett.98.146401
http://dx.doi.org/10.1103/PhysRevLett.100.185501
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1021/ja902302h
http://dx.doi.org/10.1021/ja902302h
http://dx.doi.org/10.1002/anie.200462457
http://dx.doi.org/10.1002/anie.200462457


[17] T. Fink and J.-L. Reymond, J. Chem. Inf. Model. 47, 342
(2007).

[18] R. Guha, M. T. Howard, G. R. Hutchison, P. Murray-Rust,
H. Rzepa, C. Steinbeck, J. K. Wegner, and E. Willighagen,
J. Chem. Inf. Model. 46, 991 (2006).

[19] J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys.
105, 9982 (1996).

[20] M. Ernzerhof and G. E. Scuseria, J. Chem. Phys. 110,
5029 (1999).

[21] V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren,
K. Reuter, and M. Scheffler, Comput. Phys. Commun.
180, 2175 (2009).

[22] B. J. Lynch and D.G. Truhlar, J. Phys. Chem. A 107, 3898
(2003).

[23] G. Schneider, Nat. Rev. Drug Discov. 9, 273
(2010).

[24] R. Todeschini and V. Consonni, Handbook of Molecular
Descriptors (Wiley-VCH, Weinheim, 2009), 2nd ed.

[25] We compare two molecules using the n eigenvalues of
their Coulomb matrices, n being the number of atoms,
instead of all the 4n� 6 internal degrees of freedom (3
from the coordinates, 1 from the atomic number). By
consequence, this reduction in dimensionality results in
a ML model that is undercomplete and that becomes
invariant to certain geometrical changes. This issue could
be addressed using an overcomplete metric of distance in
chemical space. For example, comparing molecules via
the Frobenius norm of the difference of two sorted
Coulomb matrices yields a ML model with similar accu-
racy. Alternatively, multiple kernels could be used to
more precisely control the desired number of degrees of
freedom.

[26] J. Behler, J. Chem. Phys. 134, 074106 (2011).
[27] B. Schölkopf and A. J. Smola, Learning with Kernels

(MIT, Cambridge, MA, 2002).
[28] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of

Statistical Learning: Data Mining, Inference, and
Prediction (Springer, New York, 2009), 2nd ed.

[29] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B.
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