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Recent studies have suggested that a monolayer of self-avoiding hard rods confined on a spherical

surface may display a distribution texture corresponding to splay, tennis-ball, rectangle, or cut-and-rotate

splay symmetries. We investigate the system on the basis of a generalized Onsager model which includes

both excluded-volume and entropic effects. The numerical solution indicates that the splay state, where on

average rods line up in parallel to the longitudinal lines on the spherical surface, is the only stable state.
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Introduction.—Consider a two-dimensional liquid con-
fined on a spherical surface of radius R, consisting of N
volume-excluding, rodlike particles of length L. At low
relative surface coverage density, NL2=4�R2, to maximize
the orientational and positional entropies, no particular
pattern would form by these rods. Beyond a transition
density, coupled orientational and positional ordering starts
to emerge, giving rise to a configurational texture on the
spherical surface.

This model belongs to a class of recently studied sys-
tems that points to the possibility of producing a multi-
valent spherical colloid particle by coating a micron-size
sphere with a layer of anisotropic particles [1], dispersing a
hard sphere in a nematic solution [2], or creating emulsion
droplets with nematic liquids [3,4]. Such structures break
the azimuthal symmetry of a splay distribution on a spheri-
cal surface, shown in Fig. 1(a). Practical applications using
these structures in designing new smart materials have
been explored [4–6]. Of particular interest is the tetrahedral
structure, which contains four þ1=2 defects appearing at
the vertices of a tetrahedron on the spherical surface,
shown in Fig. 1(b), two on the xz plane near the north
pole and two on the yz plane near the south pole.
Theoretical studies based on the Frank elastic energy
[1,7,8], Landau–de Gennes free energy [2,9], and lattice
nematic shell Lebwohl-Lasher model [10,11] of related
systems predicted such a structure.

Could a tetrahedral configuration exist in the current
model of volume-excluding rigid rods on a spherical sur-
face? Or, even loosely, instead of having four defects
located exactly at the corners of an equal-sided tetrahe-
dron, can a tennis-ball state exist where the vector joining
the two defects near the north pole is perpendicular to the
vector joining the other pair near the south pole [Fig. 1(b)]?
Recent Monte Carlo simulations of thin rigid rods confined
on a spherical surface ruled out the existence of the perfect
tetrahedral tennis-ball structure [12,13]. Instead, other pos-
sible defect structures have been suggested. On the basis of
a Monte Carlo snapshot, Bates [13] showed a configuration
that resembles a tennis-ball texture but is more similar to
splay; in another simulation snapshot the vector joining the

two defects near the north pole is parallel to the vector
joining the other pair near the south pole, four defects
forming corners of a rectangle on the xz plane shown in
Fig. 1(c). Shin et al. [12] and Bates [13] also suggested the
existence of a so-called ‘‘cut-and-rotate’’ splay structure—
the pattern resembles cutting a perfect splay state along the
north-south pole plan and then rotating one of the hemi-
spheres by an angle about the y axis, shown in Fig. 1(d).
Model.—In this Letter, we consider numerical solutions

of a free-energy model, generalizing the Onsager interac-
tion between rodlike particles in a flat space to a system of
N rigid ‘‘rods’’ occupying the surface of a sphere of radius
R. These rods are not exactly straight, each being a geo-
desic segment of length L with no thickness, on the spheri-
cal surface along a great circle. A density distribution
function can be used to characterize the system, %ðr;uÞ,
where r and u are the position vector and tangent unit
vector, respectively, of the center of mass of a rod,R
%ðr;uÞdudr ¼ N. Following the well-known Onsager

approach, which includes a second-virial term, we can
write down the free energy of the system [14],

�F ¼
Z

%ðr;uÞ ln½8�2R2%ðr;uÞ�drdu

þ 1

2

Z
%ðr;uÞwðr;u; r0;u0Þ%ðr0;u0Þdrdudr0du0:

(1)

The second term contains a function wðr;u; r0;u0Þ that
depends on variables (r;u) and (r0;u0), representing the
coordinates of the centers of mass of two rods; this function

FIG. 1 (color online). Idealized illustration of four possible
structures considered in this work: splay (a), tennis ball (b),
rectangle (c), and cut-and-rotate splay (d).
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takes value 1 if any parts of the two rods overlap and 0
otherwise. Apart from a trivial linear term in %ðr;uÞ in-
troduced for later convenience, the first term arises because
of both orientational and translational entropies. The free
energy as a functional of %ðr;uÞ needs to be minimized;
the result is the stable-state distribution function for the
system.

In order to minimize the free energy, we expanded
%ðr;uÞ in terms of spherical harmonics Ylm and Fourier
bases Un,

%ðr;uÞ ¼ N

R2

X

lmn

�lmnYlmð�;�ÞUnð�Þ; (2)

where r is represented by the spherical coordinates � and
� and u by the angle � that u makes with respect to a
longitudinal line. Except for the leading term that renders
the normalization condition, all other expansion coeffi-
cients �lmn were adjusted to minimize the free energy.
We aim at finding an exact solution of the free-energy
model using a multiple-variable approach, so that the
free energy can be minimized with no ambiguous approx-
imations. We truncated the expansion beyond l ¼ 8 and
n ¼ 8 terms and estimated that the truncation error does
not exceed the size of symbols in the following illustra-
tions. The detailed numerical approach, together with a
computational procedure to deal with both terms in (1),
will be documented elsewhere.

Free-energy minimum.—This model has a trivial solu-
tion corresponding to an isotropic state, %isoðr;uÞ ¼
N=8�2R2. The free energy of the system can be written,

�Fiso ¼ N lnN þ N2L2

4�2R2
sinc

L

2R
; (3)

where sincðxÞ ¼ sinðxÞ=x. We then consider the free-
energy difference per rod,

~f � ð�F� �FisoÞ=N: (4)

An examination of ~f shows that out of three variables, L, R,
and N, only two reduced parameters are important, L=R,
and the reduced surface density,

�L2 ¼ NL2=ð4�R2Þ: (5)

All three solid curves in Figs. 2(a)–2(c) represent the

same ground-state splay energy ~f obtained from the nu-
merical minimization for L=R ¼ 0:5. The number of sur-
viving terms in the expansion (2) varies according to the
underlying symmetries of a particular structure in Fig. 1.
Because the splay conformation has a higher symmetry
than the other three, all terms corresponding to the splay
conformation (‘‘splay terms’’) exist in the expansions of
the other three free energies. We employed four different
processes of conducting the minimization search. Each
process corresponds to a study of a particular type of
conformation; we directly searched for the free-energy
minimum, varying the undetermined coefficients of all
relevant terms and removing all other terms that violate
the symmetry properties of such a conformation. By the
end of the search, all four processes converge to one single
result: only the coefficients of the splay terms are signifi-
cantly present and coefficients of the nonsplay terms van-
ish. Within the range of parameter space studied,
L=R ¼ ½0:1; 1�, in high �L2 we found that the splay con-
formation is the only stable ground state of the free energy
in (4).
In order to dissect the structures associated with the

nonsplay conformations, we took another approach in our
numerical study. Each nonsplay conformation is charac-
terized by a leading term in the free-energy expansion,
tennis ball by the ðl; m; nÞ ¼ ð3; 2; 0Þ term, rectangle by the
ð2; 2; 0Þ term, and cut-and-rotate splay by the ð3;�2; 0Þ
term. These are the terms that do not exist in a splay state.
We fixed the coefficients of these terms (hence, enforced
symmetry breaking into a particular structure) in small
increments and numerically searched for the free-energy
minima by varying other coefficients. Examples of such
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FIG. 2 (color online). Minimized Onsager free-energy difference, Eq. (4), plotted as a function of reduced number density �L2 [(a)–
(c)] and as a function of the cut-and-rotate angle �, for L=R ¼ 0:5. The solid curve (black) in (a)–(c) is the splay branch of the free
energy. Dashed lines were produced by fixing the leading symmetry-breaking term in the density distribution expansion (2): �3;2;0

fixed at�0:1 (brown),�0:08 (yellow),�0:06 (blue),�0:04 (green), and�0:02 (red) from the top to bottom curves for tennis ball (a),
�2;2;0 at 0.1 (brown), 0.08 (yellow), 0.06 (blue), 0.04 (green), and 0.02 (red) for rectangle (b), and �3;�2;0 at 0.1 (brown), 0.08 (yellow),

0.06 (blue), 0.04 (green), and 0.02 (red) for cut-and-rotate splay (c). In (d), circles, squares, diamonds, and triangles represent �L2 ¼
7:96, 11.94, 15.92, and 19.90, respectively.
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minimizations are displayed in Figs. 2(a)–2(c) for L=R ¼
0:5. Plots for other values of L=R in the range ½0:1; 1� share
the same features, except for shifts in ~f magnitude and
splay bifurcation point. All calculations demonstrate that

other possible conformations have a ~f above the splay
ground state.

The consideration of the existence of a ground-state
tennis-ball conformation stemmed from an analysis of
elastic theory of the orientational field generated by the
particles. In a one-Frank-constant approximation in two
dimensions [1,7], K2 is absent and K1 ¼ K3, where K1 for
splay distortion, K2 for twist distortion, and K3 for bend
distortion are the Frank constants; the Frank energy can be
mapped into the energy of the two-dimensional ferromag-
netic XY model [15]. Then one can show that the free
energy is proportional to the square of the defect index.
The tennis-ball conformation contains four þ1=2 defects
(the orientational field turns a � angle around each defect)
and the splay conformation contains two þ1 defects (the
orientational field turns 2� around each defect). Thus,
within this assumption, the tennis-ball conformation has
a lower energy than that of the splay [1,7].

Here we deal with the specific system of thin rods. We
can introduce a trial function describing the angular distri-
bution about a vector director field ~nðrÞ. An expansion of
the Onsager free energy, Eq. (1), in terms of the first spatial
derivatives, exactly recovers the structure of the Frank
energy. According to Refs. [16,17], such a treatment yields
an estimate K1 � K3, which does not satisfy the one-
Frank-constant approximation to start with. Hence, it is
not surprising that the tennis-ball configuration is not the
ground state in the current model [12,13].

Confined systems consisting of molecules with some
semiflexibility might display the tennis-ball texture in
high density. An interesting real system is the liquid of
5CB molecules [4], which has K1 � K3 [18], consistent
with the one-Frank-constant condition; experimentally,
nonsplay textures were observed [4]. Another related sys-
tem, though theoretical, is a long self-avoiding semiflexi-
ble polymer chain confined on a spherical surface. Because
of the flexibility along the chain, K3 now becomes com-
parable to K1. Using Monte Carlo simulations, we recently
concluded that this system displays a disorder-order
transition, where the ordered state always accompanies
the tennis-ball symmetry [19].

Using Monte Carlo simulations on a spherical surface,
Shin et al. found the simulation evidence of the so-called
cut-and-rotate splay conformation in closely packed
straight hard rods [12], where L=R � 0:4 and �L2 � 14.
In an idealized picture [Fig. 1(d)] where the director field
perfectly aligns along the longitudinal lines, the cut-and-
rotate splay configuration has a similar Frank energy as the
splay state, according to the analysis in Ref. [12]. However,
the angular distribution about the director field of this
conformation contains a sharp change at the cutting circle.

Following the trial function approach and taking a com-
plete expansion of the Onsager free energy in terms of
spatial derivatives of ~nðrÞ, we can show that only the
quadratic derivative terms correspond to the Frank energy
[16]. Higher order derivatives, hence the unexpanded ver-
sion of the Onsager free energy, disfavor such sharp
changes by raising the free energy of the system. This
effect rules out the cut-and-rotate splay in the current
system. It should be noted that our model deals with
geodesic rods, which are not exactly straight rods simu-
lated in Refs. [12,13]; despite this, we still expect the same
qualitative physical picture in the small L=R limit.
To show the cut-and-rotate effects, we took the density

distribution %splðr;uÞ from the minimized splay state, cut it

through the xz plane, and rotated the distributions along the
positive and negative y axes by a relative � angle. In

Fig. 2(d), we display the cut-and-rotate ~f as a function of
the rotation angle � for L=R ¼ 0:5. From the plot, we can
see that the cut-and-rotate splay structure has a higher free
energy in comparison with that of the splay state (� ¼ 0 or
�). Systems of other L=R values have similar features.
This analysis, together with the symmetry-based analysis
in Figs. 2(a)–2(c), precludes the probability that cut-and-
rotate splay is a stable state within the validity of the
free-energy model in (1).
Isotropic-splay transition.—Here we examine two order

parameters that characterize the overall ordering of the
isotropic-splay transition of the system. One of which,
�, concerns the global orientational order,

� ¼ N�1
Z

cos2�%ðr;uÞdudr ¼ 2��002: (6)

The other parameter, �, describes the global spatial order,

� ¼ N�1
Z

P2ðcos�Þ%ðr;uÞdudr ¼ ffiffiffiffiffiffiffiffi
8=5

p
��200: (7)

A positive� in the anisotropic region implies that the rods
tend to line up in the parallel direction to the longitudinal
lines; a negative � in the anisotropic region means that the
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FIG. 3. Orientational and positional order parameters, (a) �
and (b) �, plotted as functions of reduced density, �L2, for
L=R ¼ 0:5. Data points associated with nonzero � and � were
produced from splay configurations. The area inside the two
vertical lines indicates a narrow transition region.
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density distribution has a peak in the equator region of the
spherical surface.

The order-parameter plots in Fig. 3 follow the splay
solution of the model and give us the approximate location
of the transition density for the disorder-splay phase tran-
sition (a bifurcation point). We can substitute (2) into (4) to

produce a Landau expansion of ~f in terms of�lmn. A close
examination of the expansion, however, reveals the exis-
tence of cubic terms, which couple positional order with
orientational order, in systems where L=R � 0.

Following a free-energy analysis identical to the one
used in studying the first-order isotropic-nematic transition
of a lyotropic system of rods [20], we can determine the
transition densities �isoL

2 and �splL
2 by equating the os-

motic pressures and chemical potentials. These densities
are plotted in Fig. 4(a) by down and up triangles, respec-
tively, for the range L=R ¼ ½0:1; 1� studied in this work.
The first-order transition gap �iso � �spl becomes wider in

larger L=R systems and converges to zero in the limit of a
flat two-dimensional system (L=R ! 0). This fact implies
that the first-order disorder-splay transition reduces to a
continuous isotropic-nematic transition as L=R ! 0,
within the validity of the Onsager model; the numerical
asymptotic reduced transition density at L=R ¼ 0,
�cL

2 ðnumericalÞ ¼ 4:71, is consistent with the analytical
value found earlier �cL

2 ðtheoreticalÞ ¼ 3�=2 [21,22].
The first-order nature of the disorder-splay transition in
finite L=R systems can be compared to the first-order
nature of the isotropic-nematic transition in a three-
dimensional system [20,23].

In a typical plot given in Fig. 3 where � continually
changes, we can divide � into three regions. In the � � �iso

or � � �spl region, the system is either in a disorder or

splay state. In the �iso < �< �spl region, the system is in a

mixed disorder-splay state with a possible interface. For
comparison, in a lyotropic liquid crystal system, an
isotropic-nematic interface can be stabilized when the

overall number density is between the two transition den-
sities [24–27].
As it turns out, in a Monte Carlo simulation where the

critical fluctuations existed, Frenkel and Eppenga [28]
showed that the two-dimensional isotropic-nematic
transition in a flat space is a Kosterlitz-Thouless (KT)
transition. The model in the current work is of a mean-
field nature and does not capture coherent critical fluctua-
tions. The relationship between the first-order
disorder-splay transition of rods on a spherical surface
and the KT isotropic-nematic transition of rods in a flat
surface remains to be explored.
Summary.—We examined a free-energy model on the

basis of a generalized Onsager approximation for rigid rods
confined on the spherical surface and interacting with each
other through the excluded-volume interaction. The model
does not contain phenomenological parameters and prop-
erly includes major entropic contributions. We developed a
numerical method which allows us to minimize the free
energy, adjusting the density distribution function. We
found that the free-energy minimum corresponds to a
stable splay state and that the tennis-ball, rectangle, and
cut-and-rotate splay configurations are all not stable,
within a significantly wide parameter region searched
computationally. The properties of the disorder-splay tran-
sition were also discussed.
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