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We consider spin dynamics for implementation in an atomistic framework and we address the

feasibility of capturing processes in the femtosecond regime by inclusion of moment of inertia. In the

spirit of an s-d-like interaction between the magnetization and electron spin, we derive a generalized

equation of motion for the magnetization dynamics in the semiclassical limit, which is nonlocal in both

space and time. Using this result we retain a generalized Landau-Lifshitz-Gilbert equation, also including

the moment of inertia, and demonstrate how the exchange interaction, damping, and moment of inertia, all

can be calculated from first principles.
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In recent years there has been a huge increase in the
interest in fast magnetization processes on a femtosecond
scale, which has been initialized by important develop-
ments in experimental techniques [1–5], as well as poten-
tial technological applications [6]. From a theoretical side,
the otherwise trustworthy spin dynamical (SD) simulation
method fails to treat this fast dynamics due to the short time
and length scales involved. Attempts have been made to
generalize the mesoscopic SD method to an atomistic SD,
in which the dynamics of each individual atomic magnetic
moment is treated [7,8]. While this approach should in
principle be well suited to simulate the fast dynamics
observed in experiments, it has not yet reached full pre-
dictive power as it has inherited phenomenological pa-
rameters, e.g., Gilbert damping, from the mesoscopic SD.
The Gilbert damping parameter is well established in the
latter regime but it is not totally clear how it should be
transferred to the atomic regime. In addition, very recently
it was pointed out that the moment of inertia, which
typically is neglected, plays an important role for fast
processes [9]. In this Letter we derive the foundations for
an atomistic SD where all the relevant parameters, such as
the exchange coupling, Gilbert damping, and moment of
inertia, can be calculated from first-principles electronic
structure methods.

Usually the spin dynamics is described by the phenome-
nological Landau-Lifshitz-Gilbert (LLG) equation [10,11]
which is composed of precessional and damping terms
driving the dynamics to an equilibrium. By including the
moment of inertia, we arrive at a generalized LLG equation

_M ¼ M� ð��Bþ Ĝ _MþÎ €MÞ; (1)

where Ĝ and Î are the Gilbert damping and the moment of
inertia tensors, respectively. In this equation the effective
field B includes both the external and internal fields, of
which the latter includes the exchange coupling and an-
isotropy effects. Here, we will for convenience include
the anisotropy arising from the classical dipole-dipole

interaction responsible for the shape anisotropy as a part
of the external field. The damping term in the LLG equa-
tion usually consists of a single damping parameter, which
essentially means that the time scales of the magnetization
variables and the environmental variables are well sepa-
rated. This separation naturally brings a limitation to the
LLG equation concerning its time scale which is restricting
it to the mesoscopic regime.
The addition of a moment of inertia term to the LLG

equation can be justified as follows. A general process of a
moment M under the influence of a field F is always
endowed with inertial effects at higher frequencies [12].
The field F and momentM can, for example, be stress and
strain for mechanical relaxation, electric field and electric
dipole moment in the case of dielectric relaxation, or
magnetic field and magnetic moment in the case of
magnetic relaxation. In this Letter we focus on the latter
case—the origin of the moment of inertia in SD. The
moment of inertia leads to nutations of the magnetic mo-
ments, see Fig. 1. Its wobbling variation of the azimuthal
angle has a crucial role in fast SD, such as fast magneti-
zation reversal processes.
In the case of dielectric relaxation the inertial effects are

quite thoroughly mentioned in the literature [13,14], espe-
cially in the case of ferroelectric relaxors. Coffey et al. [14]
have proposed inertia corrected Debye’s theory of dielec-
tric relaxation and showed that by including inertial

FIG. 1. The three contributions in Eq. (1), the bare precession
arising from the effective magnetic field, and the superimposed
effects from the Gilbert damping and the moment of inertia,
respectively.
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effects, the unphysical high frequency divergence of the
absorption coefficient is removed.

Very recently Ciornei et al. [9] have extended the LLG
equation to include the inertial effects through a magnetic
retardation term in addition to precessional and damping
terms. They considered a collection of uniformly magne-
tized particles and treated the total angular momentum L
as faster variable. They obtained Eq. (1) from a Fokker-
Plank equation where the number density of magnetized
particles were calculated by integrating a nonequilibrium
distribution function over faster variables such that faster
degrees of freedom appear as parameter in the calculation.

The authors showed that at very short time scales the
inertial effects become important as the precessional mo-
tion of magnetic moment gets superimposed with nutation
loops due to inertial effects. It is pointed out that the
existence of inertia driven magnetization dynamics opens
up a pathway for ultrafast magnetic switching [15] beyond
the limitation [16] of the precessional switching.

In practice, to perform atomistic spin-dynamics simula-

tions the knowledge of Ĝ and Î is necessary. There are
recent proposals [17,18] of how to calculate the Gilbert
damping factor from first principles in terms of
Kubo-Greenwood–like formulas. Here, we show that simi-
lar techniques may by employed to calculate the moment

of inertia tensor Î. Finally, we present a microscopical
justification of Eq. (1), considering a collective magneti-
zation density interacting locally with electrons constitut-
ing spin moments. Such a description would in principle be
consistent with the study of magnetization dynamics where
the exchange parameters are extracted from first-principles
electronic structure calculations, e.g., density functional
theory (DFT) methods. We find that in an atomistic limit
Eq. (1) actually has to be generalized slightly as both the
damping and inertia tensors are naturally nonlocal in the
same way as the exchange coupling included in the effec-
tive magnetic field B. From our study it is clear that both
the damping and the moment of inertia effects naturally
arise from the retarded exchange interaction.

We begin by considering the magnetic energy
E ¼ M �B. Using that its time derivative is _E ¼ M � _Bþ
_M �B along with Eq. (1), we write

_E ¼ M � _Bþ 1

�
_M � ðĜ _MþÎ €MÞ: (2)

Relating the rate of change of the total energy to the
Hamiltonian H , through _E ¼ hdH =dti, and expanding
H linearly around its static magnetization M0, with
MðtÞ ¼ M0 þ�ðtÞ, we can write H � H 0 þ�ðtÞ �
r�H 0, where H 0 ¼ H ðM0Þ. Then the rate of change

of the total energy equals _E ¼ _� � hr�H i to the first

order. Following Ref. [19] and assuming sufficiently slow
dynamics such that �ðt0Þ ¼ �ðtÞ � � _�ðtÞ þ �2 €�ðtÞ=2,
� ¼ t� t0, we can write the rate of change of the magnetic
energy as

_E ¼ lim
!!0

_�i½�ijð!Þ�j þ i@!�ijð!Þ _�j � @2!�ijð!Þ €�j=2�:
(3)

Here, �ijð!Þ ¼ Rð�iÞ�ð�Þh½@iH 0ðtÞ; @jH 0ðt0Þ�iei!�dt0,
� ¼ t� t0, is the (generalized) exchange interaction tensor
out of which the damping and moments of inertia can be
extracted. Summation over repeated indices (i, j ¼ x, y, z)
is assumed in Eq. (3). Equating Eqs. (2) and (3) results in
an internal contribution to the effective field about which
the magnetization precesses Bint ¼ �lim!!0�ð!Þ, the

damping term Ĝ ¼ �lim!!0i@!�ð!Þ as well as the mo-

ment of inertia Î ¼ ��lim!!0@
2
!�ð!Þ=2.

For a simple order of magnitude estimate of the damping

and inertial coefficients, Ĝ and Î, respectively, we may
assume for a state close to a ferromagnetic state that the
spin resolved density of electron states ��ð"Þ correspond-
ing to the static magnetization configurationH 0 is slowly
varying with energy. At low temperatures we, then, find

Ĝ� 2��sp½h@iH0i�h@jH0i��"¼"F ; (4)

in agreement with previous results [19]. Here, sp denotes
the trace over spin 1=2 space. By the same token, the
moment of inertia is estimated as

Î��ð�=DÞsp½h@iH0i�h@jH0i��"¼"F ; (5)

where 2D is the bandwidth of density of electron states of
the host material. Typically, for metallic systems the band-
width 2D� 1–10 eV, which sets the time scale of the
inertial contribution to the femtosecond (10�15 s) regime.
It, therefore, defines magnetization dynamics on a time
scale that is one or more orders of magnitude shorter
compared to, e.g., the precessional dynamics of the mag-
netic moment.
Next, we consider the physics leading to the LLG equa-

tion given in Eq. (1). As there is hardly any microscopical
derivation of the LLG equation in the literature, we include
here, for completeness the arguments that leads to the
equation for the spin-dynamics from a quantum field the-
ory perspective.
In the atomic limit the spin degrees of freedom are

deeply intertwined with the electronic degrees of freedom,
and hence the main environmental coupling is the one to
the electrons. In this study we are mainly concerned with a
mean field description of the electron structure, as in the
spirit of the DFT. Then a natural and quite general descrip-
tion of the magnetic interaction due to electron-electron
interactions on the atomic site around r within the
material is captured by the s-d-like model H int ¼
�R

Jðr; r0ÞMðr; tÞ � sðr0; tÞdrdr0, where Jðr; r0Þ represents
the interaction between the magnetization density M and
the electron spin s. From a DFT perspective the interaction
parameter Jðr; r0Þ is related to the effective spin dependent
exchange-correlation functional Bxc½Mðr0Þ�ðrÞ. For gener-
ality we assume a fully relativistic treatment of the
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electrons, i.e., including the spin-orbit coupling. In this
interaction the dichotomy of the electrons is displayed,
they both form the magnetic moments and provide the
interaction among them.

Owing to the general nonequilibrium conditions in the
system, we define the action variable

S ¼
I
C
H intdtþ SZ þ SWZWN (6)

on the Keldysh contour [20–22]. Here, the action SZ ¼
��

H
C

R
Bextðr; tÞ �Mðr; tÞdtdr represents the Zeeman

coupling to the external field Bextðr; tÞ, whereas the
Wess-Zumino-Witten-Novikov (WZWN) term SWZWN¼RH

C

R
1
0Mðr;t;�Þ�½@�Mðr;t;�Þ�@tMðr;t;�Þ�d�dtjMðrÞj�2dr

describes the Berry phase accumulated by the
magnetization.

In order to acquire an effective model for the magneti-
zation density Mðr; tÞ, we make a second order [23] ex-
pansion of the partition functionZ½Mðr; tÞ� � trTCe

iS , and
take the partial trace over the electronic degrees of freedom
in the action variable. The effective action 	SM for the
magnetization dynamics arising from the magnetic inter-
actions described in terms of H int, can, thus, be written

	SM ¼ �
I Z

Mðr; tÞ �Dðr; r0; t; t0Þ �Mðr0; t0Þdrdr0dtdt0;
(7)

where Dðr; r0; t; t0Þ ¼ R
Jðr; r1Þð�iÞhTsðr1; tÞsðr2; t0Þi �

Jðr2; r0Þdr1dr2 is a dyadic which describes the electron
mediated exchange interaction.

Conversion of the Keldysh contour integrations into real
time integrals on the interval (�1, 1) results in

S ¼
Z

MðfastÞðr; tÞ � ½Mðr; tÞ � _Mðr; tÞ�dtjMðrÞj�2dr

þ
Z

MðfastÞðr; tÞ �Drðr; r0; t; t0Þ �Mðr0; t0Þdrdr0dtdt0

� �
Z

Bextðr; tÞ �MðfastÞðr; tÞdtdr; (8)

with MðfastÞðr; tÞ ¼ Muðr; tÞ �Mlðr; tÞ and Mðr; tÞ ¼
½Muðr; tÞ þMlðr; tÞ�=2 which define fast and slow varia-
bles, respectively. Here, MuðlÞ is the magnetization density

defined on the upper (lower) branch of the Keldysh con-
tour. Notice that upon conversion into the real time do-
main, the contour ordered propagator D is replaced by its
retarded counterpart Dr.

We obtain the equation of motion for the (slow) magne-
tization variable Mðr; tÞ in the classical limit by minimiz-

ing the action with respect toMðfastÞðr; tÞ, cross multiplying
by Mðr; tÞ under the assumption that the total moment is
kept constant. We, thus, find

_Mðr; tÞ ¼ Mðr; tÞ �
�
��Bextðr; tÞ

þ
Z

Drðr; r0; t; t0Þ �Mðr0; t0Þdt0dr0
�
: (9)

Equation (9) provides a generalized description of the
semiclassical magnetization dynamics compared to the
LLG Eq. (1) in the sense that it is nonlocal in both time
and space. The dynamics of the magnetization at some
point r depends not only on the magnetization locally at r,
but also in a nontrivial way on the surrounding magneti-
zation. The coupling of the magnetization at different
positions in space is mediated via the electrons in the
host material. Moreover, the magnetization dynamics is,
in general, a truly nonadiabatic process in which the infor-
mation about the past is crucial.
However, in order to make a connection to the magne-

tization dynamics as described by, e.g., the LLG equation
as well as Eq. (1) above, we make the following consid-
eration. Assuming that the magnetization dynamics is slow
compared to the electronic processes involved in the time-
nonlocal field Dðr; r0; t; t0Þ, we expand the magnetization
in time according to Mðr0; t0Þ � Mðr0; tÞ � � _Mðr0; tÞ þ
�2 €Mðr0; tÞ=2. Then for the integrand in Eq. (9), we get

Drðr;r0;t;t0Þ �Mðr0;t0Þ

¼Drðr;r0;t;t0Þ �
�
Mðr0; tÞ�� _Mðr0; tÞþ�2

2
€Mðr0;tÞ

�
: (10)

Here, we observe that as the exchange coupling for the
magnetization is nonlocal and mediated through D, this is
also true for the damping (second term) and the inertia
(third term).
In order to obtain an equation of the exact same form as

LLG in Eq. (1) we further have to assume that the magne-
tization is close to a uniform ferromagnetic state, then
we can justify the approximations _Mðr0; tÞ � _Mðr; tÞ
and €Mðr0; tÞ � €Mðr; tÞ. When Bint ¼ �R

Dðr; r0; t; t0Þ �
Mðr0; tÞdr0dt0=� is included in the total effective magnetic

fieldB, the tensors of Eq. (1) Ĝ and Î can be identified with
�R

�Dðr; r0; t; t0Þdr0dt0 and R
�2Dðr; r0; t; t0Þdr0dt0=2, re-

spectively. From a first-principles model of the host mate-
rials we have, thus, derived the equation for the
magnetization dynamics discussed in Ref. [9], where it
was considered from purely classical grounds. However,
it is clear that for a treatment of atomistic SD that allows
for all kinds of magnetic orders, not only ferromagnetic,
Eq. (1) is not sufficient and the more general LLG equation
of Eq. (9) together with Eq. (10) has to be used.
We finally describe how the parameters of Eq. (1)

can be calculated from a first-principles point of view.
Within the conditions defined by the DFT system, the
interaction tensor Dr is time local which allows us
to write lim"!0i@"Drðr; r0; "Þ ¼ R

�Drðr; r0; t; t0Þdt0 and
lim"!0@

2
"Drðr; r0; "Þ ¼ �R

�2Drðr; r0; t; t0Þdt0, where
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Drðr;r0;"Þ¼4sp
Z
Jr�J�0r0

fð!Þ�fð!0Þ
"�!þ!0 þ i	

�� ImGr
�0�ð!Þ� ImGr

��0 ð!0Þd!
2�

d!0

2�
d�d�0:

(11)

Here, Jrr0 � Jðr; r0Þ whereas Gr
rr0 ð!Þ � Grðr; r0;!Þ is the

retarded GF, represented as a 2� 2 matrix in spin spaces.
We notice that the above result presents a general expres-
sion for frequency dependent exchange interaction. Using
Kramers-Krönig’s relations in the limit " ! 0, it is easy to
see that Eq. (11) leads to

Drðr; r0; 0Þ ¼ � 1

�
sp Im

Z
Jr�J�0r0fð!Þ�Gr

�0�ð!Þ
� �Gr

��0 ð!Þd!d�d�0; (12)

in agreement with, e.g., Ref. [24]. We can make connection
with previous results, e.g., Refs. [25,26], and observe that
Eq. (11) contains the isotropic Heisenberg, anisotropic
Ising, and Dzyaloshinsky-Moriya exchange interactions
between the magnetization densities at different points in
space [22], as well as the on-site contribution to the mag-
netic anisotropy.

Using the result in Eq. (11), we find that the damping
tensor is naturally nonlocal and can be reduced to

Ĝðr; r0Þ ¼ 1

�
sp

Z
Jr�J�0r0f

0ð!Þ� ImGr
�0�ð!Þ

� � ImGr
��0 ð!Þd!d�d�0; (13)

which besides the nonlocality is in good accordance with
the results in Refs. [17,25], and is closely connected to the
so-called torque-torque correlation model [27]. With in-
clusion of the spin-orbit coupling in Gr, it has been dem-
onstrated that Eq. (13) leads to a local Gilbert damping of
the correct order of magnitude for the case of ferromag-
netic permalloys [17].

Another application of Kramers-Krönig’s relations
leads, after some algebra, to the moment of inertia tensor

Îðr; r0Þ ¼ sp
Z

Jr�J�0r0fð!Þ�
�
ImGr

�0�ð!Þ
� �@2! ReGr

��0 ð!Þ þ ImGr
��0 ð!Þ

� �@2! ReGr
�0�ð!Þ

�
d!

2�
d�d�0; (14)

where we notice that the moment of inertia is not simply a
Fermi surface effect but depends on the electronic structure
as a whole of the host material. Although the structure
of this expression is in line with the exchange coupling in
Eq. (12) and the damping of Eq. (13), it is a little more
cumbersome to compute due the presence of the deriva-
tives of the Green’s functions. Note that it is not possible to
get completely rid of the derivatives through partial inte-
gration. These derivatives also make the moment of inertia

very sensitive to details of the electronic structure, which
has a few implications. First, the moment of inertia can
take large values for narrow band magnetic materials, such
as strongly correlated electron systems, where these de-
rivatives are substantial. For such systems the action of
moment of inertia can be important for longer time scales
too, as indicated by Eq. (5). Second, the moment of inertia
may be strongly dependent on the reference magnetic
ordering for which it is calculated. It is well known that
already the exchange tensor parameters may depend on the
magnetic order. It is the task of future studies to determine
how transferable the moment of inertia tensor as well as
damping tensor are in between different magnetic ordering.
In conclusion, we have derived a method for atomistic

spin-dynamics which would be applicable for ultrafast
(femtosecond) processes. Using a general s-d-like interac-
tion between the magnetization density and electron spin,
we show that magnetization couples to the surrounding in a
nonadiabatic fashion, something which will allow for stud-
ies of general magnetic orders on an atomistic level, not
only ferromagnetic. By showing that our method capture
previous formulas for the exchange interaction and damp-
ing tensor parameter, we also derive a formula for calcu-
lating the moment of inertia from first principles. In
addition our results point out that all parameters are non-
local as they enter naturally as bilinear sums in the same
fashion as the well established exchange coupling. Our
results are straightforward to implement in existing atom-
istic SD codes, so we look on with anticipation to the first
applications of the presented theory which would be fully
parameter free and hence can take a large step towards
simulations with predictive capacity.
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[2] G. P. Zhang and W. Hübner, Phys. Rev. Lett. 85, 3025

(2000).
[3] M.G. Münzenberg, Nature Mater. 9, 184 (2010).
[4] S. L. Johnson et al., Phys. Rev. Lett. 108, 037203 (2012).
[5] A. Kirilyuk, A.V. Kimel, and T. Rasing, Rev. Mod. Phys.

82, 2731 (2010).
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