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Recently, the scaling result z ¼ d for the dynamic critical exponent at the Bose glass to superfluid

quantum phase transition has been questioned both on theoretical and numerical grounds. This motivates a

careful evaluation of the critical exponents in order to determine the actual value of z. We study a model of

quantum bosons at T ¼ 0 with disorder in 2D using highly effective worm Monte Carlo simulations. Our

data analysis is based on a finite-size scaling approach to determine the scaling of the quantum correlation

time from simulation data for boson world lines. The resulting critical exponents are z ¼ 1:8� 0:05,

� ¼ 1:15� 0:03, and � ¼ �0:3� 0:1, hence suggesting that z ¼ 2 is not satisfied.
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Quantum phase transitions (QPT) occur at zero tempera-
ture and produce new and important physics compared to
‘‘classical’’ phase transitions at finite temperature [1,2]. In
particular, presence of quenched disorder leads to new
universality classes without direct classical counterparts,
where lack of space-time symmetry can lead to nontrivial
scaling properties. Such phenomena are of great current
interest and present considerable theoretical and experi-
mental challenges [1,2].

A prototype QPT with disorder is the 2D boson super-
fluid to insulator transition in the presence of random
substrate disorder. The disorder localized insulating phase
is a gapless phase called the Bose glass. This transition is
relevant for experiments on ultrathin granular supercon-
ducting films, Josephson junction arrays, superfluid helium
films, and cold bosons in optical lattices with disorder
[3,4]. A remarkable result of the theory is the relation
z ¼ d, where d is the number of spatial dimensions [3].
This scaling result was believed to be exact, but has been
questioned recently both analytically and numerically
[5–7]. The result z ¼ d is derived by requiring the contri-
bution to the compressibility � from the singular part of the
free energy to be a nonsingular function across the tran-
sition. However, if � instead comes from the analytic part
of the free energy no restriction on z follows and the
relation z ¼ d does not have to hold [5]. In 1D z ¼ 1 is
fulfilled [3], but for reasons that are unrelated to the argu-
ment that led to the z ¼ d result [6].

The task of determining the quantum dynamical expo-
nent at the disordered boson QPT to test the validity of the
relation z ¼ 2 in 2D has been studied previously. An often
used approach has been to assume the value z ¼ 2 and then
test if scaling can be obtained by fitting other parameters to
numerical data. This approach produces seemingly good
scaling results for the system sizes tested [8–11], but does
not rule out that a calculation without a priori assumptions
might give a different result. A recent simulation study
reports z � 1:4 [7], but this result might be affected by the
limited disorder averaging used [11]. Renormalization

approaches have also been used to determine z [12], but
have not yet settled [5]. Thus the validity of the result
z ¼ d is unclear and further tests are required.
In this Letter we perform large scale Monte Carlo (MC)

simulations to determine z and other critical exponents at
the Bose glass transition of the dirty boson model in d ¼ 2
dimensions. We extend previous simulation results in sev-
eral ways. We use extensive disorder averaging, and larger
system sizes than in most previous studies, which turns out
to be crucial. A highly effective worm algorithm is used
that permits efficient averaging over configurations with
different boson winding numbers [13]. In order to locate
the QCP and study dynamical scaling, a suitable function
of the winding number is constructed that has a maximum
value when the system size in the time direction is propor-
tional to the correlation time. Finite-size scaling of the
maximum gives a direct route to calculating z and other
critical exponents, without any a priori assumptions on z.
The results display significant corrections to scaling for
small system sizes that complicates determination of the
exponents. Our estimate, z ¼ 1:8� 0:05, suggests that
the dynamic exponent is smaller than given by the relation
z ¼ d for d ¼ 2.
Dirty boson model.—The imaginary-time path-integral

representation of the 2D Boson Hubbard model with near-
est neighbor hopping, on-site charging energy, and a dis-
ordered chemical potential can be mapped to a link-current
model convenient for simulation [9]. The link-current
model assumes only phase fluctuations of the order pa-
rameter and neglects amplitude fluctuations, has isotropic
space-time couplings, and uses the Villain form of
the potential [9]. Such details are not expected to alter
the universality class of the QPT. The Hamiltonian of the
link-current model is

H ¼ 1
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Here i ¼ ðr; �Þ denotes the sites of a (2þ 1)-dimensional
simple cubic space-time lattice of size L� L� L� with
periodic boundary conditions in space and time directions,
and � ¼ x, y, � denotes the coordinate directions. The
integer link variables J�i represent boson current variables
on the links extending from the site i in the � direction. The
variables are subject to the divergence-free constraint
r � J ¼ 0, which means that the worldlines have no open
ends. K is a coupling constant. Disorder is modeled as a
quenched on-site potential which is random in space but
constant in the time direction, with a uniform distribution
in jvrj< 1=2. The chemical potential is here fixed to � ¼
1=2 which means half filling of bosons on average. The
transition of this model represents the generic universality
class of the disorder driven boson localization QPT.

Next we introduce the two main quantities of interest in
our simulations. The mean square winding number is
defined as

W2
� ¼

���
1

L�

X
i

J�i

�
2
��

: (2)

The bracket h� � �i indicates average with respect to
J-current configurations, and ½� � �� indicates the quenched
disorder average. The spatial mean square winding number
measures fluctuations in the number of times the world-
lines wind across the sample, and is proportional to the
superfluid density [14]. It can thus be used to detect the
boson superfluid to insulator QCP. The temporal winding
number fluctuations (including subtraction of the average
boson number) correspond to the boson compressibility �
[9]. The gapless nature of the Bose glass produces a smooth
nonzero compressibility across the transition [3]. From
now on we will only consider spatial winding number
fluctuations, and form W2 ¼ ðW2

x þW2
y Þ=2. The Greens

function Gðr� r0; �� �0Þ ¼ ½heið�r;���r0 ;�0 Þi� can be used to
define the uniform order parameter susceptibility � ¼
Gðk ¼ 0; ! ¼ 0Þ [3,9].

Monte Carlo simulations.—Our MC simulations use the
classical lattice worm algorithm [13]. For each disorder
realization the simulation was started in the J-current
configuration that minimizes H in Eq. (1). The simulations
used more than 1500 MC sweeps to reach equilibrium,
followed by equally many sweeps to collect data for the
averages. Here a MC sweep is defined as 3L2L� link
variable update attempts. Measurements are taken every
time the worm closes. The winding number is given by the
number of times the world lines wrap around the sample,
and the susceptibility is the average number of update
attempts per closed loop configuration [10]. We tested for
equilibration by monitoring disorder averages of the wind-
ing number fluctuations and of the susceptibility calculated
using different numbers of warm-up sweeps. An example
is shown in the inset in Fig. 1. The results become inde-
pendent of the initial configuration after about 500 warm-
up sweeps. The quenched disorder averaging used between

104–105 samples of the random potential, where more
disorder averaging was used around the critical point.
Statistical error bars on the data points were estimated by
fluctuations in the disorder averages.
Finite-size scaling methods.—The basic scaling assump-

tion is that the correlation length and time diverge at the
transition as 	� jkj�� and �� 	z, where k ¼ ðK � KcÞ=
Kc, Kc is the critical coupling, � is the correlation length
exponent, and z is the dynamic exponent. The winding
number fluctuation is dimensionless and therefore
scale invariant at the transition. We assume the following
finite-size scaling (FSS) ansatz for the winding number
fluctuation

W2ðK;L; L�Þ ¼ ~W2ðL1=�k; 
�Þ (3)

and for the susceptibility

�ðK;L; L�Þ ¼ L2�� ~�ðL1=�k; 
�Þ; (4)

where ~W2 and ~� are scaling functions, and 
� ¼ L�=L
z is

the aspect ratio. The aim is to estimate the critical expo-
nents z, �, � and scaling functions by fitting these expres-
sions to numerical MC data for finite L, L�.
FSS analysis greatly simplifies if the scaling functions

can be reduced to functions of only one variable by taking
the other variable to be constant. Taking the first variable

L1=�k to be constant means keeping K ¼ Kc, which is a
priori unknown, while keeping the second variable con-
stant requires knowledge of z. Most previous studies have
therefore assumed the value z ¼ 2 and selected system
sizes for simulations given by L� ¼ const� L2. Clearly,
this approach is not available if the value of z is unknown.
The idea is now to, without assuming knowledge of Kc

and z, construct a characteristic scale L�
� for each given K,
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FIG. 1 (color online). Selection of Monte Carlo results for the
winding number fluctuation divided by L2

� as a function of L�.
Solid curves are polynomial fits to the data curves, from which
the locations L�

� and sizes ðW2=L2
�Þ� of the maxima can be

determined. Inset: Equilibration test for L ¼ 40, L� ¼ 240,
K ¼ 0:2477.
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L, which scales as L�
� � �� Lz for K ¼ Kc, where � is the

correlation time. The winding number fluctuation is a
monotonically increasing function of L� for fixed K, L.
For L� 	 � the worldline fluctuations separated by times
greater than the correlation time � decorrelate, and then the
winding number fluctuation must increase linearly with L�.
Thus the quantity W2=L� approaches a constant value for
L� 	 �. Dividing once more gives W2=L2

�, which has a
maximum at a characteristic L�

�, and goes to zero for L� 	
�, where the star indicates the value at the maximum. We
will find these maxima very useful in the scaling analysis
[15]. A convenient scaling form is produced by replacing
L� in W2=L2

� by 
� ¼ L�=L
z. We thus introduce

�ðK;L; L�Þ 
 W2


2
�

¼ ~�ðL1=�k; 
�Þ: (5)

This FSS relation is used below to estimate the critical
coupling Kc and the exponents z, �. We verified that our
approach reproduces known exponents for pure models.

Results.—First, we locate the critical coupling Kc and
the dynamic exponent z by FSS analysis of MC data for the
winding number. Figure 1 shows examples of maxima of
the quantityW2=L2

�. The amplitude ðW2=L2
�Þ� and location

L�
� of the maxima can be straightforwardly computed by

polynomial fits to the MC data curves. Better accuracy is
obtained in the estimates for ðW2=L2

�Þ� than for L�
�. The

maximum values scale as ðW2=L2
�Þ� � L�2z at K ¼ Kc.

However, it is more convenient to plot the quantity �� ¼
ðW2=
2

�Þ� of Eq. (5), and look for the scaling �� � L0 at
K ¼ Kc, which is shown in a log-log plot in Fig. 2. In the
figure the value of z enters through 
�

� ¼ L�
�=L

z, and has
been adjusted to make �� ¼ const at K ¼ Kc for system
sizes L > 16, marked with the horizontal dashed line. This

produces the estimates z � 1:8 and Kc � 0:2477. For
K � Kc the data curves clearly splay out, away from a
critical power law. For L < 16 deviation from power law
behavior is obtained, which indicates the presence of cor-
rections to scaling in these data points. In Fig. 2 we also
note that the choice z ¼ 2 gives an approximate descrip-
tion of the data for K ¼ 0:246 for small system sizes,
L < 16, which is indicated by the lower dashed line, in
agreement with Ref. [10]. As a consistency test, a similar
analysis was done for the location L�

� of the maxima using
the relation L�

� � Lz at K ¼ Kc, leading to similar results.
Figure 3(a) shows the maxima of the function �� of

Eq. (5), for z � 1:78. The data curves for L > 16 intersect
at Kc, but for smaller sizes scaling deviations are present,
and these will be further discussed below. The correlation
length exponent is readily estimated by computing the

derivatives @��=@KjK¼Kc
� L1=�, and a polynomial fit to

the MC data gives � � 1:15. The FSS data collapse pro-
duced by using this value for � is shown in Fig. 3(b) for
L > 16.
To estimate the correlation function exponent � we use

the susceptibility � given by Eq. (4). We fix the aspect ratio
to 
� ¼ 0:35with z ¼ 1:78, which correspond to the max-
ima�� at criticality. The value of � at this aspect ratio was
determined by a polynomial fit to nearby MC data. From
�� L2�� we estimate � � �0:3 for L � 16. Figure 3(c)
shows a corresponding intersection plot for the quantity
�=L2��, which becomes size independent at K ¼ Kc ac-
cording to Eq. (4). A FSS collapse assuming � ¼ 1:15 is
shown in Fig. 3(d). Note that the deviations from scaling
for small system sizes in Fig. 3(c) are substantial, and
hence the uncertainty in the estimate of � is considerable.
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FIG. 2 (color online). Maximum values �� ¼ ðW2=
2
�Þ� vs

system size L for different couplings K. For z ¼ 1:78 the data
obeys �� ¼ const at K ¼ Kc for L � 16, indicated by the
horizontal dashed line, which estimates Kc ¼ 0:2477. The lower
dashed line corresponds to z ¼ 2, which approximately de-
scribes the data for small sizes L < 16 at K ¼ 0:246.
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FIG. 3 (color online). (a) Intersection plot for the scaled wind-
ing number function maxima ��, showing an intersection at
Kc ¼ 0:2477. (b) FSS data collapse of the data in (a) obtained
for � ¼ 1:15, L � 16. (c) Intersection plot for the scaled sus-
ceptibility �=L2�� evaluated at 
� ¼ 0:35. The data curves for
large sizes roughly intersect at K ¼ 0:2477 for � ¼ �0:29, but
with much larger corrections visible for small system sizes than
for ��. (d) FSS data collapse of �=L2�� for � ¼ 1:15, L � 16.
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The scatter among the intersection points can be reduced
by assuming a scaling correction proportional to L�! with
! � 1, but the accuracy of the data is insufficient for
detailed estimates.

Finally, we systematically study the system size depen-
dence of the estimated exponents and estimate errors. This
final calculation does not involve the maxima, and thus
avoids any errors in their determination. A double poly-
nomial expansion is done of the scaling functions in Eqs.
(3) and (4) in both arguments. The parameters are deter-
mined by �2 minimization of the rms deviations of the MC
data points from the scaling function. We performed sev-
eral fits for MC data points selected from different intervals
in the range 0:2<
� < 1:2 in order to verify the stability
of the results. To study system size trends of the results, fits
were made for a sequence of system size quadruplets in
L ¼ 8, 10, 12, 16, 20, 30, 40, 60. The result for z is shown
in the inset of Fig. 4. The displayed trend agrees with the
one indicated in Fig. 2. For the fit with L ¼ 16, 20, 30, 40,
0:2<
� < 0:5, we get �2=DOF � 0:8. Our final esti-
mates including error estimates based on statistical errors
determined by the bootstrap method combined with aver-
age variations from the dependence on the 
�-interval
included in the fits are Kc ¼ 0:2477� 0:0002, z ¼ 1:8�
0:05, � ¼ 1:15� 0:03, and� ¼ �0:3� 0:1. Other critical
exponents can be estimated from these values using scaling
laws.

Discussion.—Analysis of our MC data of the 2D boson
localization transition by disorder revises previous esti-
mates of the critical exponents. In particular, the dynamic

critical exponent is estimated to z ¼ 1:8� 0:05, which
suggests that z ¼ d is not fulfilled in d ¼ 2, although the
values are close. Our results clarify how most previous
simulations appear consistent with z ¼ 2. For small system
sizes z ¼ 2 works quite well, but including larger sizes
reveals corrections to scaling making z ¼ 1:8 a better
estimate. Our estimates are quite different from those of
Ref. [7], which we believe may be explained by their
smaller disorder averaging and uncertainty in their location
of the quantum critical point. The prediction of a universal
conductivity at the transition is independent of the value of
z [3]. However, actual estimates of the universal value of
the conductivity indirectly depend on the value of z, and
should be reexamined in the light of the present results. A
better analytic understanding of the quantum critical dy-
namics as well as further experimental measurements
probing these issues would be welcome.
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