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Structure of Iron to 1 Gbar and 40 000 K
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First-principles calculations show that compression-induced electronic transitions produce a rich phase
diagram featuring reentrant stability of the fcc phase with an extremum on the fcc to hcp boundary at
23 Mbar and 19000 K, conditions similar to those expected at the center of super-Earth exoplanets.
Transformations of hep to fcc at 57 Mbar due to 4s to 3d electron transfer and from fcc to a body-centered
structure at 320 Mbar due to hybridization of the 3d with the core 3 p band are experimentally observable
along a quasi-isentrope generated by laser-induced ramp compression.
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As the fourth most abundant and the heaviest major
refractory element in the Universe, iron is expected to be
a dominant constituent of the cores of rocky, ice-giant, and
gas-giant planets, including exoplanets. The behavior of
iron at pressures beyond Earth’s center is expected to be
very different from the terrestrial regime, because core
electrons, tightly bound to the nucleus at normal condi-
tions, are increasingly excited by compression and partici-
pate in bonding, where they influence material properties,
including phase stability.

The crystal structure of iron in the cores of planets larger
than Earth is currently unknown, although such knowledge
is important for understanding the generation of planetary
magnetic fields. The stable phase of iron is hexagonal
close-packed (hcp) from 0.1 to at least 4 Mbar [1]. At
very low pressure and low temperature, magnetism stabil-
izes the body-centered cubic (bcc) structure, while at low
pressure and moderate temperature the face-centered cubic
(fcc) phase becomes more stable because of the phonon
contribution to the free energy. The wide stability field of
the hep phase, encompassing conditions at Earth’s center
(3.6 Mbar, 6000 K), is well understood and agrees with the
expectations of canonical band theory [2]. Recently, the
phase stability of iron has been computed up to 50 TPa
(500 Mbar) but only at zero temperature [3].

At superterrestrial pressures, one expects canonical band
theory to break down, because it assumes that the 3d band
does not interact strongly with other states, except for
hybridization with the 4s band, the influence of which
can be accounted for in terms of d electron occupation
[2]. This picture is valid at low pressure because the 3 p and
other core electrons are so tightly bound to the nucleus that
they do not interact with the 3d states. At high compres-
sion, the energies of the lower angular momentum states
(4s and 3p) rise more rapidly than that of the 3d band,
leading to electron transfer and hybridization of the core
electrons with the valence electrons.

Iron is an ideal system for revealing the influence of core
electrons on phase stability: The work done by compres-
sion up to 100 Mbar in iron is similar to that of the 3p core
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PACS numbers: 61.50.Ks, 62.50.—p, 64.70.kd, 91.45.Bg

electron binding energy (50 eV). The maximum pressure
of our study (1 Gbar = 100 TPa) is the approximate limit
of normal matter, beyond which deuterium fusion occurs
[4], the process that separates the largest planets from the
smallest stars (brown dwarfs). The large number of exo-
planets discovered with masses much greater than Jupiter
[5] means that central pressures approaching 1 Gbar may
be typical of planetary iron in the Universe.

We use finite temperature density functional theory to
predict the phase diagram of iron up to 1 Gbar and
40000 K (Fig. 1). Our results are based on the Mermin
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FIG. 1 (color online). Phase diagram of iron. Bold black lines
show the results of our calculations including the fcc = hep and
fcc = bee phase coexistence lines. Thin black lines show the
experimental phase boundaries. Superimposed on the phase
diagram are (red lines) the calculated isentrope (lower) and
Hugoniot (upper). Pressure-temperature conditions at the center
of Earth, a super-Earth with 5 times Earth’s mass [36], and
Jupiter [4] are shown by the blue circles. The calculated fcc =
hcp coexistence line is dashed at low pressure where the slope is
influenced by magnetic contributions that we have neglected.
The stability field of liquid, indicated with gray hatching, is
estimated from our computed vibrational frequencies via the
Lindemann law [38].
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functional [6], which has been applied with success to
other systems including iron, where it correctly predicts
the stable crystalline phase of iron at conditions of Earth’s
core [7], and aluminum at higher temperature and pressure
[8]. We determine the stable phase at pressure P and
temperature 7 as the one with the lowest Gibbs free energy
G. We calculate the Gibbs free energy via the Legendre
transformation G = F + PV, where F is the Helmholtz
free energy, P = —dF/dV, and V is the volume [9]. The
Helmholtz free energy is F(V, T) = E((V) + Fyu(V, T) +
Fu(V,T) + dE,(V), where E is the static contribution
computed at zero Kelvin, F, is the phonon contribution in
the quasiharmonic approximation, and F, is the contribu-
tion from the thermal excitation of electrons. The dEj,
term is the lattice strain energy due to the slightly nonideal
minimum energy value of the ¢/a ratio in hcp; we assume
that dE,, is independent of temperature. We compute all
contributions to the free energy in the generalized gradient
approximation in the Perdew-Burke-Ernzerhof formula-
tion [10]. Previous studies have shown that the generalized
gradient approximation yields excellent agreement with
experimental measurements of iron phase equilibria, in-
cluding the bcc to hep transition, the stability of hcp at
conditions of Earth’s core, and the melting curve [7,11,12].
This level of theory is appropriate because the 3d band-
width exceeds the energy of local electronic repulsion
(Hubbard U) [13] by more than a factor of 10 in the
pressure regime of interest.

We compute the static contributions to the free energy
Ey, dE,, with the full potential linearized augmented-
plane wave with local basis functions method (LAPW +
LO) as implemented in the Krakauer-Singh code [14,15],
which we used also in our previous study of iron [11], with
a 12 X 12 X 12 Monkhorst-Pack k-point mesh [16] and
basis set specified by the product of the muffin-tin radius
and the maximum momentum RypK .« = 9.0. We com-
pute the remaining terms with the projector-augmented
plane wave method as implemented in the VASP code
[17]. The phonon contribution is computed in the quasi-
harmonic approximation with help of the code PHON [18]
and by using supercells with 64 (bcc), 64 (fcc), and 96
(hcp) atoms, a 4 X 4 X 4 k-point mesh, energy cutoff of
400 eV, and atomic displacements of 1% of the nearest
neighbor distance. The phonon and electronic contribu-
tions are computed by assuming the Mermin functional
of finite temperature density functional theory [6]. All
calculations are performed on a dense mesh of volume
and temperature points (represented by symbols in the
figures) and smoothly and accurately interpolated to obtain
the static pressure from the linearized augmented-plane-
wave total energy calculations, Gibbs free energies, and
phase boundaries.

At low pressure, our results agree well with previous
theoretical calculations [19] and with experiment from
I Mbar up to the maximum pressure explored in static

experiments to date (4 Mbar) [1]. Below 1 Mbar, the slope
of the calculated hcp = fcc boundary differs from that
experimentally observed because of the influence of mag-
netism. We have neglected magnetism as in previous high-
pressure theoretical calculations [19] because the spin
vanishes at P <2 Mbar [20]. We also ignore the liquid
phase in this study, as it is stabilized by anharmonic con-
tributions to the free energy that lie beyond the quasihar-
monic approximation that we adopt. Continuing the phase
diagram into the metastable, supersolidus regime clarifies
the origins of crystalline phase stability. We note that
anharmonicity may influence the positions of solid-solid
phase boundaries. The effect is apparently small for the fcc
to hep boundary: Our quasiharmonic boundary agrees with
the fully anharmonic calculation of Ref. [21] to within a
few hundred degrees Kelvin near the melting point.

At high pressure, we find reentrant stability of fcc and a
body-centered phase at the highest pressures and tempera-
tures (Fig. 1). To understand the predicted phase diagram,
we examine the individual contributions to the free energy.
The static (low temperature) contribution shows the stabi-
lization of fcc and then bcc over hep upon compression
(Fig. 2). The origin of these phase transitions is found in
the band structure (Fig. 3). Within the hcp stability field,
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FIG. 2 (color online). Static contribution to the energy: the
difference fcc-hep (red), bee-hep (blue), and bet-hep (green) are
shown. Pressure is indicated along the top axis. Downward-
pointing arrows indicate the volumes at which band structures
are shown in Fig. 3. Properties of phase transformations, includ-
ing the phase transition pressure P, the volume of the low
pressure phase V, and the volume contrast AV are hcp to fec:
P, = 60 Mbar, V; = 18.5 a.u. (33.9 g/cm?), AV = 0.15%; fcc
to bce: P, =383 Mbar, V, =9.4 au. (66.7 g/cm?), AV =
0.1%. The dashed blue line and open blue symbols are for
ferromagnetic bec iron from our previous work [11] and show
the influence of magnetism on the stability of iron at low
pressure.
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FIG. 3 (color online). Band structure of iron at high pressure in
the stability field of hep (left), fcc (middle), and bece (right). The
Fermi energy is denoted by the dashed black line. Bands are
color-coded according to the amount of d character in the
eigenstates as indicated. Bands are well separated in the middle
panel in order of increasing energy: 3s, 3p, 3d, and 4s. Band
structures are calculated in the fcc structure.

the band structure of iron is typical of that of 3d transition
metals at low pressure: The 3d band hybridizes with the 4s
state. Within the fcc stability field, the 4s band becomes
completely separated from the 3d band, causing s to d
electron transfer. Within the bcc stability field, the core 3p
states, which are narrow and tightly bound at low pressure,
broaden and hybridize with the 3d band. It is possible that
other phases of iron are more stable than those we have
considered. However, a structural search based on the
pseudopotential method at static conditions finds the
same sequence of low temperature transitions that we do
with an all-electron method and produces no other stable
phases up to 500 Mbar, aside from a slight tetragonal
distortion of the bcc structure at the highest pressure [3].
We confirm this slight structural distortion, finding that a
mechanically stable body-centered tetragonal structure
with ¢/a = 0.975 is 20 meV lower in energy than bcc.

Temperature has a large influence on phase stability:
The hcp stability field shrinks with increasing temperature,
producing reentrant fcc stability (Fig. 1). The origin of the
reentrant behavior is seen in the phonon and electronic
contributions to the fcc-hcp free energy difference (Fig. 4).
These contributions favor fcc over the entire stability field
of hep. The hep stability field must therefore diminish from
low- and high-pressure sides with increasing temperature.
The large influence of temperature on stability that we find
differs from the conclusion drawn in a previous low tem-
perature study that the influence of temperature would be
minor, based on a limited number of calculations of mode
frequencies and thermal electronic excitation energies [3].
This discrepancy highlights the importance of fully treat-
ing phonon and electronic contributions to the free energy,
as we have done.

The phonon and electronic contributions to the fcc-hep
energy difference can be further traced to the vibrational
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FIG. 4 (color online). Finite temperature contributions to the
free energy including the electronic (top) and phonon (bottom)
terms; pressure is indicated along the top axis. The top panel
shows the difference in electronic free energy between fcc and
hep phases over a range of temperatures as indicated (1000—
20000 K). The inset shows that the electronic density of states at
the Fermi level is higher in fcc than in hep at high pressure. The
bottom panel shows the difference in the logarithm of the
geometric mean vibrational frequency, which is directly propor-
tional to the phonon contribution to the free energy.

and electronic densities of states in these structures
(Fig. 4). The phonon contribution is more favorable in
the case of fcc, because this structure has a lesser mean
vibrational frequency (zeroth moment of the vibrational
density of states w,), which yields F, = kT In(w,) to
within a few meV at high temperature [22,23]. The elec-
tronic contribution is more favorable in the case of fcc,
because the electronic density of states at the Fermi level
n(Er) is greater. The greater value of n(Ep) in fcc origi-
nates in the crystal structure: Different packing sequences
ABCA... (fcc) vs ABAB... (hcp) lead to larger hopping
contributions to n(E) from circuits involving more than
two close-packed planes in the case of fcc [24]. This
difference in band structure also accounts for the relative
instability of fcc as compared with hcp in iron at low
temperature [2].

The form of the reentrant fcc — hcp — fcc transition
can be understood on the basis of the Claussius-Clapeyron
relation (dT/dP)., = AV/AS, where the subscript indi-
cates the conditions under which the two phases coexist in
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equilibrium and AV and AS are the volume and entropy of
transition, respectively. Along the entire hcp = fcc curve,
fcc is the higher entropy phase, due to greater phonon and
electronic entropies. The fcc phase has larger volume at
low pressure, producing a positive Clapeyron slope, and
smaller volume at high pressure, producing a negative
Clapeyron slope. The two portions of the hcp = fcc bound-
ary of opposite sign converge as temperature increases. At
the maximum temperature of hcp stability, the volume of
hep and fec coincide, producing a vanishing Clapeyron
slope. Cobalt also shows a reentrant fcc — hcp — fcc
transition but at much lower pressures [25]. Another im-
portant difference with iron is that, in cobalt, magnetism is
important in controlling the relative stability of fcc and
hcp [26,27].

New experiments, based on laser-driven dynamic com-
pression, have the capability to test our predictions of
phase transitions at ultrahigh pressure [28]. In dynamic
compression, the temperature rises with increasing pres-
sure. In order to help guide new experiments, we have
computed pressure-temperature paths in two limiting
cases: shock-wave compression, governed by the
Rankine-Hugoniot relation [29] E — Ey = (P + Py)(V —
Vy)/2, where subscripts 0 refer to the preshocked state, and
isentropic compression, in which shaped laser pulses pro-
duce more gradual compression and, in the limit, no en-
tropy production. In both cases, we have assumed that the
precompressed state is ferromagnetic bee iron at ambient
conditions [11].

We find that the temperature along the isentrope rises
sufficiently slowly that it crosses the hcp — fcc and the
fcc — bee transitions (Fig. 1). Along the Hugoniot, in
contrast, the temperature rises far too rapidly and enters
the supersolidus regime at relatively low pressure. On the
isentrope, we predict that the volume and entropy contrasts
across the solid-solid phase transitions are small and may
not be detectable via measurements of the pressure-density
relation alone. Instead, detection of these transitions will
likely require the development of in sifu x-ray diffraction
[30] or scattering [31].

We gain additional insight into the origin of the hcp to
fce transition near 50 Mbar, which we attribute to 4s to 3d
electron transfer, by relating our results to analyses of
phase stability in other transition metals. Canonical band
theory predicts that the fcc structure becomes increasingly
stable as the d electron occupation increases from Fe to Co
to Ni [2]. Our results are compatible with this trend, as
increasing the d electron occupation in iron, due to s to d
electron transfer, stabilizes the fcc structure on compres-
sion (Fig. 3). The influence of s to d electron transfer on
phase stability has been studied systematically in the 4d
transition metals up to 10 Mbar [32]. These calculations
also show the tendency for fcc to become increasingly
stable with increasing d electron occupation. The transfer
of electrons from 4s to 3d bands has also been studied in

nickel, where it is predicted to produce an insulating state
at 340-510 Mbar [33]. A previous study of ultrahigh-
pressure iron at zero temperature also pointed out that 4s
to 3d electron transfer occurred [3] but did not identify this
change in the electronic structure as the cause of hcp to fcc
transition.

The influence of 3 p-3d hybridization on phase stability,
which we identify as the origin of the fcc to bec transition,
has been comparatively little explored in transition metal
systems. The low temperature transition sequence calcu-
lated in Cr and Mo is similar to what we find in iron, with
3 p-3d hybridization stabilizing the bce phase at the highest
pressures [34]. Extensions of canonical band theory also
show that 3p-3d hybridization tends to stabilize the bcc
structure [35].

Our results indicate that solid inner cores of super-Earth
exoplanets are composed of iron in the hcp phase (Fig. 1).
The crystal structure is significant, because solidification
of the inner core from the overlying liquid outer core on
cooling is a major driving force for generating planetary
magnetic fields [36]. Much of the energy released comes
from the exclusion of lighter alloying elements from the
inner core as it freezes. At conditions similar to those of
Earth’s core, it is known that the fcc phase accommodates
light alloying elements more readily than hcp [37]. For this
reason, the crystalline phase of Earth’s core and the amount
of energy released on cooling is still uncertain. On the
other hand, super-Earth cores lie deeper within the hcp
stability field, so that light elements will be more effec-
tively excluded from the growing inner core, contributing
to the energy needed for magnetic field generation.
Magnetic fields may be a common feature of super-Earth
exoplanets, promising a powerful probe of their interior
thermal state.
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