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We present a gauge fixing of gravity coupled to a scalar field in spherical symmetry such that the

Hamiltonian is an integral over space of a local density. Such a formulation had proved elusive over the

years. As in any gauge fixing, it works for a restricted set of initial data. We argue that the set could be

large enough to attempt a quantization the could include the important case of an evaporating black hole.
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Spherically symmetric gravity coupled to a scalar field
has been an arena where many seminal ideas of black hole
physics originated, through classical and semiclassical
treatments. The full quantization of the model has resisted
analysis, in part due to the complexity of the Hamiltonian
structure of the system. If one could gain control of this
model it would be a superb scenario to test key ideas about
black hole evaporation. The first attempt to treat the prob-
lem quantum mechanically was carried out by Berger,
Chitre, Nutku and Moncrief [1] and further developed by
Unruh [2]. The resulting Hamiltonian was intractable
enough that Unruh remarked ‘‘I present it here in the
hope that someone else may be able to do something
with it.’’ More recently, Husain and Winkler, and
Daghigh, Kunstatter and Gegenberg [3], using Painlevé-
Gullstrand coordinates simplified somewhat Unruh’s treat-
ment. All these efforts, however, failed to produce a local
Hamiltonian. We would like to show that using Ashtekar’s
new variables a gauge fixing can be found that yields a
Hamiltonian that is the spatial integral of a Hamiltonian
density. A similar gauge fixing can be carried out in tradi-
tional variables [4]. It also appears to apply in other 1þ 1
models, like the Callan-Giddings-Strominger-Horowitz
black holes [5]. We do not have a clear explanation as to
why it seems to apply in such generality, it appears to be
related to the possibility of defining a mass function [6,7].

The subject of spherical symmetry with Ashtekar’s new
variables has been discussed in many instances. We will
not carry out a full discussion here. We refer the readers to
the literature. This is just a minimal introduction in order to
make the Letter self-consistent. The topology of the spatial
manifold will be chosen of the form� ¼ Rþ � S2. Wewill
use a radial coordinate x and study the theory in the range
[0,1]. The case in which there is a horizon at x ¼ 0 can be
treated with suitable boundary conditions.

The formalism for dealing with spherically symmetric
gravity with Ashtekar’s new variables was discussed by
Bojowald and Swiderski[8] and also in our recent paper
[9]. It is best to make several changes of variables to
simplify things and improve asymptotic behaviors. We
will not go through all these steps here. It suffices to notice
that at the end of the process one is left with two pairs of
canonical variables E’ and K’ (in our recent paper [9]

called �A’), and E
x andKx, that are related to the traditional

canonical variables in spherical symmetry

ds2 ¼ �2dx2 þ R2d�2 ¼ ðE’Þ2
Ex dx2 þ Exd�2 (1)

and P� ¼ ffiffiffiffiffiffi
Ex

p
K’=ð2�Þ where � is the Barbero–Immirzi

parameter and P� is the momentum canonically conjugate
to�, and we are considering the positive branch of Ex. One
also has that the conjugate momentum to the variable R is

given by PR ¼ ffiffiffiffiffiffi
Ex

p
Kx

� þ E’K’

2
ffiffiffiffi
Ex

p
�
. The diffeomorphism and

Hamiltonian constraint can be written as (To derive Eq. (3)
one substitutes �A’ ¼ 2�K’, 2�Kx ¼ Ax þ �0 in equa-

tion (47) of Ref. [9] and adds the scalar field contribution,
e.g., equation (2) of [10]. We have absorbed a factor of 4�
in Newton’s constant.),
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Recalling that the total Hamiltonian for the system is
given by HT ¼ R

dxðNxCx þ NHÞ, one can redefine the

shift Nx
new ¼ Nx

old þ 2NK’

ffiffiffiffiffiffi
Ex

p
=ðExÞ0, and the lapse

Nnew ¼ NoldðExÞ0=E’, and one gets a Hamiltonian con-
straint that reads,
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The quantity in the square brackets above is a total
derivative,

H¼ 1

G
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This remarkable property is the key element in allowing to
define a local Hamiltonian. Choosing a gauge in which the
term involving the derivative does not depend on the
gravitational variables, one is left with a Hamiltonian
that only depends algebraically on the gravitational varia-
bles. As we mentioned, it appears that this is typical of all
theories in 1þ 1 dimensions that involve a mass function.
It at least holds spherically symmetric Einstein gravity in
the traditional and new variables, and for the Callan-
Giddings-Harvey-Strominger model.

We will completely gauge fix the theory. The first gauge
condition is �1 ¼ 0 with

�1 ¼ Ex � x2: (6)

In order to preserve the constraint in time the Lagrange
multiplier Nx gets fixed Nx ¼ 0. The diffeomorphism con-
straint can be solved, determining the variableKx. The only
constraint left is the Hamiltonian, which (omitting an over-
all factor 1=ðGðE’Þ2Þ becomes,

H ¼
�
x

�
x2

ðE’Þ2 � K2
’ � 1

��0ðE’Þ2 � 2GxK’�
0P�E

’

þGP2
� þGx4ð�0Þ2: (7)

Our strategy will be to perform a canonical transforma-
tion from the variables �, P�, K’, E

’ to a new set of

variables X, PX, f, Pf such that X is essentially what

appears in the square brackets differentiated. We will later
fix the gauge by setting X equal to a given function of t, x.
As a consequence PX, the canonical momentum of X, will
not appear differentiated in the constraint. This means that
preserving the gauge fixing condition will lead to an alge-
braic equation that determines the lapse, and therefore to a
local true Hamiltonian.

To construct the canonical transformation, let us start by
identifying the variable X,

� x

�
x2

ðE’Þ2 � K2
’ � 1

�
¼ Xx2�2 þ 2GMðtÞ: (8)

Recalling that the scalar field has dimensions of inverse
length in 3þ 1 dimensions, the factor x2 on the right is
chosen so X has dimensions of length (or time, since we
chose c ¼ @ ¼ 1), since it will later play the role of time.
The factor �2 is chosen so weak fields behave well in the
gauge fixing (for instance if � ¼ 0 one has K’ ¼ 0 and

E’ ¼ x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1–2GM=x

p
in the usual Schwarzschild gauge).

We added a function of time MðtÞ. Later, if one studies the
fields asymptotically one finds that M is a constant that
corresponds to the Arnowitt-Deser-Misner mass. At the
moment it is just a choice in the definition of X.
To complete the canonical transformation we then seek

a generating function, we choose it to be of type I
F1ð�;K’; X; fÞ, so one has that (recalling that

fK’ðxÞ; E’ðyÞg ¼ G�ðx� yÞ),

G
@F1

@K’

¼ E’; (9)

@F1

@�
¼ P�; (10)

@F1

@f
¼ �Pf; (11)

@F1

@X
¼ �PX: (12)

We start from the first equation and note that we can use
(8) to write E’ in terms of the quantities that the generating
function depends on,

E’ ¼ � x

Y
; (13)

where we chose the minus sign of the square root so the
Hamiltonian is positive definite and for brevity we write,

Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

’ þ 1� 2GM

x
� xX�2

s
: (14)

So we can now proceed to integrate (9) and choosing the
integration constant to give the simplest form to the gen-
erating function yields, F1 ¼ � x

G logðK’ þ YÞ þ�f.

With the generating function and (10)–(12) we find the
explicit form of the new variables in terms of the old ones,

P� � x2X�

GYðK’ þ YÞ ¼ f; (15)

Pf ¼ ��; (16)

PX ¼ � x2�2

2GYðK’ þ YÞ : (17)
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The last equation will become the Hamiltonian con-
straint when we rewrite the right-hand side entirely in
terms of the new variables. Rewriting � is immediate. To
obtain K’ we solve (7) rewritten in terms of the new

variables, i.e.,

H ¼ �ðx2�2XÞ0
Y2

þ 2Gx2K’�
0P�

Y
þGP2

� þGx4ð�0Þ2;
(18)

and P� and � given by (15) and (16) respectively, so we

have

K’ ¼ xU2 � xþ 2MGþ XP2
fx

2

2xU
; (19)

with

U ¼ 1

ðfþ x2P0
fÞ

ffiffiffiffiffiffiffi
xG

p ððP0
fÞ2x4GZþ 2x5P0

fXPf

þ 2ðXP2
fx

2Þ0x3 þ 2Xx3Pffþ f2GZþ 2xV1=2Þ1=2;
(20)

and

V ¼ xððP0
fÞ2xGZþ ðXP2

fx
2Þ0Þðf2GZþ 2x3XPfðx2P0

f þ fÞ
þ ðXP2

fx
2Þ0x3Þ (21)

Z ¼ x2XP2
f þ 2GM� x: (22)

We now consider (17) written entirely in terms of the
new variables,

PX þ x3P2
f

2GYðf; PfÞ½K’ðf; PfÞ þ Yðf; PfÞ� ¼ 0: (23)

This expression is the Hamiltonian constraint that is now
easy to deparameterize. The total Hamiltonian is given by,
HTotal ¼

R
dxNðPX þH TrueÞ, where we recognize the

true Hamiltonian density,

H True ¼
x3P2

f

2GYðf; PfÞ½K’ðf; PfÞ þ Yðf; PfÞ� : (24)

To prove that indeed this expression is the true Hamiltonian
density, we proceed to completely fix the gauge. We
choose �2 ¼ �X þ gðxÞ þ t ¼ 0. The preservation in

time of this condition, @�2

@t þ f�2; HTotalg ¼ 0 implies that

the lapse N ¼ 1. The system is now totally described in
terms of the matter field variables f, Pf, since X is fixed by

the gauge fixing and PX is given by minus the true
Hamiltonian. If we now consider the time evolution of
the remaining variables,

_f ¼ ff;HTotalg ¼ ff;HTrueg; (25)

_Pf ¼ fPf;HTotalg ¼ fPf;HTrueg; (26)

showing that the true Hamiltonian indeed generates the
evolution.
The expression for K’ (19) contains a series of square

roots. This reflects the fact that the construction will not
work for generic initial data, as one expects in gauge fixed
treatments. In order to analyze under which conditions the
construction works, we study the situation of weak fields,
so we will assume f ¼ Oð�Þ and Pf ¼ Oð�Þ with � � 1

and we will keep only leading terms in � in all equations.

We will also assume that M
ffiffiffiffi
G

p � 1 (we are using units
where @ ¼ c ¼ 1). In order to simplify expressions we will
also assume gðxÞ ¼ cx with c a positive constant. The
expression for U becomes,

U¼ 1

fþ x2Pf

ffiffiffiffiffi
2r

G

s
ððx3cP2

fÞ0 þ cxfPf þ x3P0
fcPf

þ fðx3cP2
fÞ0½2cxfPf þ ðx3cP2

fÞ0 þ 2x3P0
fcPf�g1=2Þ1=2:

(27)

Sufficient conditions for the existence of the square
roots are,

ðx3cP2
fÞ0 ¼ wðxÞ; (28)

ð2cxfPf þ 2x3P0
fcPfÞ ¼ vðxÞ; (29)

with wðxÞ and vðxÞ positive functions. Solving the differ-
ential equations we get,

Pf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
R
x wðx0Þdx0

q
x2

; (30)

f ¼ 3x
R
x wðx0Þdx0 � x2wðxÞ

2x3PfðxÞ
þ vðxÞ

x
: (31)

So we see that indeed one can specify initial data in the
gauge we chose.
We have therefore presented for the first time a local

Hamiltonian for a scalar field coupled to gravity in spheri-
cal symmetry, a problem that was unclear had a solution.
The technique appears applicable in other 1þ 1 dimen-
sional situations where there exists a mass function. The
result has a counterpart in path integral treatments, where
authors were able to integrate out the gravitational varia-
bles [11]. This includes the Callan-Giddings-Horowitz-
Strominger model, which has received renewed attention
recently [12] and is one of the best understood models of
black hole evaporation. In further work we will discuss the
boundary treatment in these coordinates and will show
the evolution of collapsing scalar field pulses numerically.
The resulting unconstrained system can be useful for quan-
tization in situations involving gravitational collapse and
black hole evaporation.
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