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Starting from the most general scalar-tensor theory with second-order field equations in four dimen-

sions, we establish the unique action that will allow for the existence of a consistent self-tuning

mechanism on Friedmann-Lemaı̂tre-Robertson-Walker backgrounds, and show how it can be understood

as a combination of just four base Lagrangians with an intriguing geometric structure dependent on the

Ricci scalar, the Einstein tensor, the double dual of the Riemann tensor, and the Gauss-Bonnet

combination. Spacetime curvature can be screened from the net cosmological constant at any given

moment because we allow the scalar field to break Poincaré invariance on the self-tuning vacua, thereby

evading the Weinberg no-go theorem. We show how the four arbitrary functions of the scalar field

combine in an elegant way opening up the possibility of obtaining nontrivial cosmological solutions.
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In a little known paper published in 1974, Horndeski
presented the most general scalar-tensor theory with
second-order field equations in four dimensions [1].
Given the amount of research into modified gravity over
the last ten years or so (see [2] for a review), it seems
appropriate to revisit Horndeski’s work. Scalar-tensor
models of modified gravity range from Brans-Dicke grav-
ity [3] to the recent models [4,5] inspired by Galilean
theory [6], the latter being examples of higher order
scalar-tensor Lagrangians with second-order field equa-
tions. Each of these models represents a special case of
Horndeski’s panoptic theory.

In this Letter, we study Horndeski’s theory on
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) back-
grounds. In particular, we ask whether or not there are
subclasses of [1] giving a viable self-tuning mechanism
for solving the (old) cosmological constant problem. In
other words, we ask if one can completely screen the
spacetime curvature from the net cosmological constant.
Naively one might expect this to be impossible on account
of Weinberg’s no-go theorem. Given certain assumptions,
this theorem states that there exists no model of self-
adjusting fields that is able to screen the spacetime curva-
ture from a nontrivial vacuum energy [7]. However, as
Weinberg himself emphasizes, for model builders the
power of a theorem often lies in identifying which assump-
tions one might wish to relax in order to evade its clutches.
Here we note that Weinberg not only assumes Poincaré
invariance at the level of the spacetime curvature but also at
the level of the self-adjusting fields. Here we follow a route
similar to [8] and allow our scalar field to break Poincaré
invariance on the self-tuning vacua, while maintaining a
flat spacetime geometry.

By demanding that the self-tuning mechanism continues
to work through phase transitions that cause the vacuum

energy to jump, we are able to impose some powerful
restrictions on Horndeski’s theory. Consistent with
Einstein’s equivalence principle (EEP), we assume that
matter is only minimally coupled to the metric and then
pass the model through our self-tuning filter. This reduces
it to four base Lagrangians each depending on an arbitrary
function of the scalar only. These are

L 1 ¼ ffiffiffiffiffiffiffi�g
p

V1ð�ÞG��r��r��; (1)

L 2 ¼ ffiffiffiffiffiffiffi�g
p

V2ð�ÞP����r��r��r�r��; (2)

L 3 ¼ ffiffiffiffiffiffiffi�g
p

V3ð�ÞR; (3)

L 4 ¼ ffiffiffiffiffiffiffi�g
p

V4ð�ÞĜ; (4)

where Ĝ ¼ R����R
���� � 4R��R

�� þ R2 is the Gauss-

Bonnet combination, "���� is the Levi-Civita tensor, and

P���� ¼ 1
4"

����R���	"
���	 is the double dual of the

Riemann tensor [9].
Our results prove that any self-tuning scalar-tensor the-

ory (satisfying EEP) must be built from these four
Lagrangians. The weakest of the four is L4 since this
cannot give rise to self-tuning without a little help from
L1 and/or L2. When this is the case, L4 does have a
nontrivial effect on the cosmological dynamics but does
not spoil self-tuning.L3 also has difficulties in going solo:
when V3 ¼ const, we just have general relativity and no
self-tuning, whereas when V3 � const, we have Brans-
Dicke gravity with w ¼ 0, which does self-tune but is
immediately ruled out by solar system constraints. Thus
it is best to consider the four base Lagrangians as combin-
ing to give a single theory, as opposed to four different
theories in their own right. In particular, we expect that one
should always include L1 and/or L2 for the reasons given
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above, and because their nontrivial derivative interactions
might give rise to Vainshtein effects [10] that would help in
passing solar system tests. Chameleon effects [11] may
also play an important role in this regard [12].

Horndeski’s theory.—The most general second-order
scalar-tensor theory is

S ¼ SH½g��;�� þ Sm½g��;�n�; (5)

where the Horndeski action, SH ¼ R
d4x

ffiffiffiffiffiffiffi�g
p

LH, is ob-

tained from Eq. (4.21) of [1],

LH ¼ 	���
���½
1r�r��R��

�� � 4

3

1;�r�r��r�r��r�r��þ
3r��r��R��

�� � 4
3;�r��r��r�r��r�r���
þ	��

��½ðFþ 2WÞR��
�� � 4F;�r�r��r�r��þ 2
8r��r��r�r��� � 3½2ðFþ 2WÞ;�

þ�
8�r�r��þ
9ð�;�Þ; (6)

with � ¼ r��r�� and 	�1�2...�n
�1�2...�n ¼ n!	½�1

�1 	
�2
�2 . . .	

�n�
�n .

Greek indices are taken to run over the four spacetime
dimensions, and we express partial derivatives with com-
mas, e.g., F;� ¼ @F

@� . We have four arbitrary functions of �
and �, 
m ¼ 
mð�;�Þ for m ¼ 1, 3, 8, 9, as well as F ¼
Fð�;�Þ, which is constrained so that F;� ¼ 
1;� � 
3 �
2�
3;�. Note that W ¼ Wð�Þ, which means that it can be
absorbed into a redefinition of Fð�;�Þ. The matter part of
the action is given by Sm½g��;�n�, where we require that
the matter fields�n are all minimally coupled to the metric
g��. This follows (without further loss of generality) from
assuming that there is no violation of Einstein’s equiva-
lence principle [13]. This reasoning is consistent with the
original construction of Brans-Dicke gravity [3].

Here we are interested in Horndeski’s theory on FLRW
backgrounds, for which we have a homogeneous scalar,
� ¼ �ðtÞ, and a homogeneous and isotropic metric,

g��dx
�dx� ¼ �dt2 þ a2ðtÞ

�
dr2

1� 
r2
þ r2d�ð2Þ

�
; (7)

with 
 being a (positive or negative) constant, specifying
the spatial curvature. Plugging this into (6), we obtain
an effective Horndeski Lagrangian in the minisuperspace
approximation

Leff
H ða; _a;�; _�Þ ¼ a3

X3
n¼0

�
Xn � Yn




a2

�
Hn; (8)

where H ¼ _a=a is the Hubble parameter, and we have,

X0¼� ~Q7;�
_�þ
9;

X1¼3ð2
8
_�3�4F;� _�þ ~Q7; _�

_�� ~Q7Þ;
X2¼�12ðFþF;�

_�2Þ; X3¼8
1;�
_�3;

Y0¼ ~Q1;�
_�þ12
3

_�2�12F; Y1¼ ~Q1� ~Q1; _�
_�;

where we have introduced ~Q1 and ~Q7, which are given

implicitly by @ ~Q1=@ _� ¼ �12
1 and @ ~Q7=@ _� ¼ 6F;� �
3 _�2
8. In a cosmological setting, the matter action con-
tributes a homogeneous and isotropic fluid with energy
density �m and pressure pm, satisfying the usual conser-
vation law _�m þ 3Hð�m þ pmÞ ¼ 0.

The generalized Friedmann equation follows in the stan-
dard manner by computing the Hamiltonian density for the
Horndeski Lagrangian, and identifying it with the energy
density, �m, as follows

H ða; _a;�; _�Þ ¼ 1

a3

�
_a
@Leff

H

@ _a
þ _�

@Leff
H

@ _�
� Leff

H

�
¼ ��m:

(9)

Since matter only couples directly to the metric, and not
the scalar, the scalar equation of motion is given by

E ða; _a; €a;�; _�; €�Þ ¼ d

dt

�
@Leff

H

@ _�

�
� @Leff

H

@�
¼ 0: (10)

Note that this equation is always linear in both €a and €�.
Self-tuning.—Since our ultimate goal is to identify those

corners of Horndeski’s theory that exhibit self-tuning, we
first ask what it means to self-tune, in a relatively model
independent way. Consider our cosmological background
in vacuum. The matter sector is expected to contribute a
constant vacuum energy density, which we identify with
the cosmological constant, h�mivac ¼ ��. In a self-tuning
scenario, this should not impact on the curvature, so what-
ever the value of ��, we have a Minkowski spacetime [14],
with H2 þ 
=a2 ¼ 0. This should remain true even when
the matter sector goes through a phase-transition, changing
the overall value of �� by a constant amount. This extra
requirement will place the strongest constraints on our
theory.
In order to proceed we shall take these transitions to be

instantaneous, thereby assuming that �� evolves in a
piecewise constant fashion. Now consider a self-tuning
solution, H2 þ 
=a2 ¼ 0, � ¼ ��ðtÞ, satisfying the ‘‘on-
shell-in-a’’ [15] equations of motion for the metric

�H ð��; _��; aÞ ¼ ��� (11)

and the scalar,

�Eð��; _��; €��;aÞ¼ €��fð��; _��;aÞþgð��; _��;aÞ¼0:

(12)
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Suppose that a phase transition occurs at some arbitrary
time t ¼ t�, so that ��ðt�� Þ � ��ðtþ� Þ. We require that the
scalar field is continuous at the transition, ��ðt�� Þ ¼
��ðtþ� Þ, but allow its derivative to jump, _��ðt�� Þ �
_��ðtþ� Þ. We first consider Eq. (11). This is discontinuous
on the right-hand side, so it must also be discontinuous on

the left, which means that �H must have some nontrivial
_�� dependence. Next consider Eq. (12). As _�� is discon-

tinuous, €�� must run into a delta function at t ¼ t�. This is
not supported on the right-hand side of Eq. (12), and since
t� can be chosen arbitrarily, we deduce that f must vanish
independently of g, so that (12) actually splits into two
equations

fð��; _��; aÞ ¼ 0; gð��; _��; aÞ ¼ 0: (13)

Focusing on the former it is clear that if f has nontrivial

dependence of _�� then it may be discontinuous at the
transition. Since it is constrained to vanish either side of

the transition we deduce that @f

@ _��
¼ 0, or equivalently f ¼

fð��; aÞ. Using this simplified form for f, we now take
derivatives, staying on-shell-in-a, so that we have

df

dt
ð��; _��; aÞ ¼ @f

@��

_�� þ @f

@a

ffiffiffiffiffiffiffiffi�

p ¼ 0: (14)

Again, applying similar logic we now conclude that
@f
@��

¼ 0 or equivalently f ¼ fðaÞ. An identical line of

argument implies that g ¼ gðaÞ. What this tells us is that
the on-shell-in-a scalar equation of motion (12) has lost all
dependence on the scalar field �� and its derivatives.
��ðtÞ is fixed by the gravity equation (11), and must
necessarily retain some nontrivial time dependence even
away from transitions in order to evade the clutches of
Weinberg’s theorem. More generally, in order to cope with
transitions the on-shell-in-a gravity equation (11) must

depend on _��. The scalar equation (10) should vanish
identically on a flat spacetime, and must therefore have
the schematic form

E ¼ X
n�1

�
An þ ~An

d

dt

�
�n; (15)

where An ¼ Anð�; _�; €�; aÞ, ~An ¼ ~Anð�; _�; €�; aÞ are ge-
neric functions and we define

�n ¼ Hn �
� ffiffiffiffiffiffiffiffi�

p
a

�
n
; (16)

which vanishes on-shell-in-a for n > 0. Since the scalar
equation (10) ultimately forces self-tuning, it should not be
trivial. Furthermore, for a remotely viable cosmology it
should be dynamical in the sense that we can evolve
towards H2 þ 
=a2 ¼ 0 rather than having it be true at
all times. This imposes the condition that at least one of the
~An should be nonvanishing. Note that the sum does not

include n ¼ 0, which is absolutely crucial in order to force
self-tuning.
Let us now apply the self-tuning filters to Horndeski’s

theory. Using Eq. (10) we can infer the following form of
the minisuperspace Lagrangian in a self-tuning setup,

Leff
self-tun ¼ a3

�
cðaÞ þ X3

n¼1

Znð�; _�; aÞ�n

�
; (17)

where cðaÞ and Zn, n ¼ 1, 2, 3 are arbitrary functions, the
former depending only on the scale factor, the latter de-

pending also on � and _�. In order for the on-shell-in-a

gravity equation (11) to retain dependence on _�� we

demand that
P

3
n¼1 nZn; _�ð

ffiffiffiffiffiffi�

p
a Þn � 0. By requiring (8) to

take the form (17) up to a total derivative, we find that we
must have 
 < 0, and that


1 ¼ 2V 0
4ð�Þ½1þ 1

2 lnðj�jÞ� � 3
8V2ð�Þ�;


3 ¼ V 00
4 ð�Þ lnðj�jÞ � 1

8V
0
2ð�Þ�� 1

4V1ð�Þ½1� lnðj�jÞ�;

8 ¼ 1

2V
0
1ð�Þ lnðj�jÞ; 
9 ¼ ��bare

� � 3V00
3 ð�Þ�;

F ¼ 1
2V3ð�Þ � 1

4V1ð�Þ� lnðj�jÞ;

with V 0
3 � 0 allowed, if and only if there exist other non-

vanishing potentials. It follows that the self-tuning version
of Horndeski’s theory must take the form

Sself-tun ¼
Z

d4x½L1 þL2 þL3 þL4 � ffiffiffiffiffiffiffi�g
p

�bare
� �

þ Sm½g��;�n�; (18)

where the base Lagrangians are built from the four base
Lagrangians (1) to (4). Note also the presence of the bare
cosmological constant term �bare

� which can always be

absorbed into a renormalization of the vacuum energy
(contained within Sm). This serves as a good consistency
check of our derivation. Such a term had to be allowed by
the self-tuning theories—if it had not been there it would
have amounted to fine tuning the vacuum energy.
Cosmology of the self-tuning theory.—We shall now

briefly present the cosmological equations for the general
self-tuning theory (18). To this end, we note that the
minisuperspace Lagrangians for the four base
Lagrangians have the desired structure given by Eq. (17),
and that the Friedmann equations describing this cosmol-
ogy are

H 1 þH 2 þH 3 þH 4 ¼ �½�� þ �matter�; (19)

where we have absorbed �bare
� into the vacuum energy

contribution ��, and
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H 1 ¼ 3V1ð�Þ _�2

�
3H2 þ 


a2

�
;

H 2 ¼ �3V2ð�Þ _�3H

�
5H2 þ 3




a2

�
;

H 3 ¼ �6V3ð�Þ
��

H2 þ 


a2

�
þH _�

V 0
3

V3

�
;

H 4 ¼ �24V0
4ð�Þ _�H

�
H2 þ 


a2

�
:

The scalar equations of motion are E1 þ E2 þ E3 þ E4 ¼ 0
where

E1¼6
d

dt
½a3V1ð�Þ _��2��3a3V 0

1ð�Þ _�2�2;

E2¼�9
d

dt
½a3V2ð�Þ _�2H�2�þ3a3V0

2ð�Þ _�3H�2;

E3¼�6
d

dt
½a3V 0

3ð�Þ�1�þ6a3V00
3 ð�Þ _��1þ6a3V0

3ð�Þ�2
1;

E4¼�24V 0
4ð�Þ d

dt

�
a3
�



a2
�1þ1

3
�3

��
:

We see that on-shell-in-a,H2 ¼ �
=a2,L4’s contribution

to the Friedmann equation loses its dependence on _�. This
explains why L4 cannot self-tune by itself. We should
emphasize that L4 does not spoil self-tuning when L1

and/or L2 are also present, even though it does alter the
cosmological dynamics. Note also that if V0

3 ¼ 0, and all

the other potentials are vanishing, then the scalar equation
of motion becomes trivial and does not force self-tuning.

For a generic combination of the four base Lagrangians
that includes L1 and/orL2, we have a scalar-tensor model
of self-tuning. The self-tuning is forced by the scalar
equation of motion, while the gravity equation links phase
transitions in vacuum energy to discontinuities in the tem-
poral derivative of the scalar field. On self-tuning vacua,
the scalar field is explicitly time dependent, as it must be in
order to evade Weinberg’s theorem [7]. A detailed study of
the self-tuning cosmology will be presented elsewhere.

Discussion.—In this Letter we have resurrected
Horndeski’s theory that describes the most general
scalar-tensor theory with second-order field equations.
We have asked which corners of this theory admit a con-
sistent self-tuning mechanism for solving the (old) cosmo-
logical constant problem. Remarkably, this reduces the
theory down to a combination of four base Lagrangians.
Self-tuning is made possible by breaking Poincaré invari-
ance in the scalar sector.

There are hints at some deep underlying structure in this
theory. This merits further investigation, but for now we
note that each of the four base Lagrangians can be asso-
ciated with a dimensionally enhanced Euler density. This is
immediately evident for L3 and L4, whereas for L1

and L2 we note that they can both be written in the
form Vð�Þr��r��

	W
	g�� , with W1 ¼

R
d4x

ffiffiffiffiffiffiffi�g
p

R and

W2 ¼ � 1
4

R
d4x

ffiffiffiffiffiffiffi�g
p

�Ĝ.

Have we really solved the cosmological constant prob-
lem? We have certainly evaded Weinberg’s theorem, but
there is plenty more to consider. Can our Lagrangians
combine to give a gravity theory that is phenomenologi-
cally consistent, in particular, at the level of both cosmol-
ogy and solar system tests? This is a work in progress, but
there are reasons to be guardedly optimistic, especially
when one considers the fact that L1 and L2 contain non-
trivial derivative interactions that may give rise to a suc-
cessful Vainshtein effect. Relevant work involving three of
the four base Lagrangians was carried out in [16].
We should also ask whether or not the self-tuning prop-

erty of the four base Lagrangians is spoiled by radiative
corrections. Although we expect that it is spoiled by matter
loops, it is interesting to note that the self-tuning is im-
posed by the scalar equation of motion, and the scalar does
not couple directly to matter. Indeed, we have performed a
rough calculation that suggests that radiative corrections
on the self-tuning background can be suppressed provided
the (possibly time dependent) cutoff �UV satisfies the

inequality
ffiffiffiffiffiffiffiffiffiffi
G��

p
<�UV < �1=4

� , where G is the (possibly

time dependent) strength of the gravitational coupling to
matter, in the linearized regime. The intriguing geometric
properties of the four Lagrangians may also play a role in a
more detailed analysis, but such considerations are beyond
the scope of this Letter.
In any event, the ethos behind our approach is not to

make any grandiose claims regarding a solution of the
cosmological constant problem but to ask what can be
achieved in this direction at the level of a scalar-tensor
theory. Given that our starting point was the most general
scalar-tensor theory, we should be in a position to make
some reasonably general statements. As we have shown,
Weinberg’s theorem alone is not enough to rule out pos-
sible self-tuning mechanisms, so even if our self-tuning
theory is ultimately ruled out by other considerations we
should be able to say we have learned something about the
obstacles towards solving the cosmological constant prob-
lem and how one might think about extending the scope of
Weinberg’s theorem.
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