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In the limit where the bending modulus vanishes, we construct layer configurations with arbitrary

dislocation textures by exploiting a connection between uniformly spaced layers in two dimensions and

developable surfaces in three dimensions. We then show how these focal textures can be used to construct

layer configurations with finite bending modulus.
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When subject to frustrating boundary conditions or ex-
treme strains, liquid crystals, superfluids, and magnets will
locally rise into their higher-symmetry phases resulting in
point, line, and planar defects [1]. Energetic considerations
determine the dimensionality of these defects; in some
systems, rigorous results demonstrate that the energy min-
imizers will have point or line defects [2,3]. Smectic liquid
crystals represent a special challenge as they are described
by an essentially nonlinear elasticity theory [1,4–6] that
gives rise to anomalous elasticity [7], dynamics [8,9], and
qualitatively modified ground states [10,11]. These non-
linearities are generic features of elastic systems with free
surfaces [12] and, thus, smectics are ideal systems for
understanding elastic geometric nonlinearities in general.
Previously, we have studied smectic liquid crystals in the
limit where the bending energy is neglected so that the
layer spacing is strictly constant [13,14]. Here we extend
some of these techniques by employing a connection be-
tween developable surfaces in three dimensions and
uniformly spaced layers in two dimensions, allowing us
to find layer configurations for any specified dislocation
texture. We compare these solutions with exact solutions to
the nonlinear elasticity [10] equations which only allow
superposition of dislocations along a single line [15–17].
Not only do the two solution methods agree, but the
geometric construction explains the fundamental asymme-
try of the smectic strain field around a dislocation, first
predicted by Brener and Marchenko [10], and sheds light
on the simple, topologically based, Bogomol’nyi-Prasad-
Sommerfield (BPS) bound [17,18]. We exploit this under-
standing to construct textures for dislocations separated by
a finite number of layers with finite bending rigidity.

The order in a smectic is characterized by the phase field
�ðxÞ appearing in the density modulation �� /
cos½2��ðxÞ=a�, where a is the natural layer spacing. In
terms of � the free energy is the sum of compression and
bending contributions
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where B is the compression modulus, � ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
K1=B

p
is the

penetration length, and K1 is the bending modulus. In
smectics A, the normal to the smectic layers is the nematic
director n ¼ r�=jr�j. Geometrical and topological in-
sight is gained by considering the surface ½x; y;�ðx; yÞ� 2
R3 with surface normal N ¼ ½�@x�;�@y�; 1�=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jr�j2p

[19]. Here, we shall focus our attention on
the limit � � a, or K1 ! 0, where bending becomes un-
important compared to compression. More physically, this
corresponds to studying edge defects of Burgers scalar b,
in the limit of large b in comparison to � [1,18]. Note that
when � ¼ 0 the free energy is strictly minimized when
jr�j ¼ 1; differentiating ðr�Þ2 ¼ 1, we have
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@y@x� @2y�

 !
@x�
@y�

� �
¼ 0; (2)

which requires the Gaussian curvature, K / @2x�@2y��
ð@x@y�Þ2 ¼ 0. It follows from Gauss’s Theorem

Egregium that our surface must be isometric to the plane,
so it can be built out of sections of planes, cones, cylinders,
and tangent-developable surfaces. The constant-angle
condition further restricts to planes, cones, and the devel-
opment of cylindrical helices [20].
It is amusing that the latter can be used to generate

uniformly spaced involutes of curves [21,22]; though
known to the ancients [23], we will briefly review the
connection between level sets of constant-angle, develop-
able surfaces and involutes. Consider a curve Rð�Þ ¼
½xð�Þ; yð�Þ; zð�Þ� in R3, parametrized by its arclength �,
with Frenet-Serret frame ½t;�;�� ¼ ½ _R; _t=�; t� ��, cur-
vature �ð�Þ> 0, and torsion �. The tangent-developable
surface is defined in terms of the curve and its family
of tangents: Xð�1; �2Þ ¼ Rð�1Þ � �2tð�1Þ for �2 � 0.
Note that the unit normal to the surface Nð�1; �2Þ ¼
@1X� @2X=j@1X� @2Xj ¼ �ð�1Þ, the curve’s binormal
at �1. It follows that N only depends on �1 and
so the Gauss curvature vanishes. If the angle between
N and ẑ is constant, then so is the angle between
� and ẑ. Differentiating with respect to �, we have
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0¼ ẑ� _�¼��ẑ�� so � lies in the xy plane. Define the
surface curve �ðsÞ ¼ Xð�1 þ s; �2 þ sÞ with tangent
_�ðsÞ ¼ ð�2 þ sÞ�ð�1 þ sÞ�ð�1 þ sÞ. � lies in a plane of
constant z ¼ c and �ðsÞ sweeps out an involute starting at
s ¼ 0 on the planar curveR?ðsÞ�½xð�1þsÞ;yð�1þsÞ;c�.
Apart from concentric circles and the uniform ground state,
any set of uniformly spaced involutes will generate an
evolute curve which constitutes a singularity or edge of
the surface and where the bending of the involutes di-
verges. Since this will generate a two-dimensional region
without smectic order, we will not consider such cases,
although surfaces like this are liable to play a role in
sample cells with large inclusions. Here we are interested
in defects that can be reduced to points and lines and so we
only consider constant-angle cones and planes. For conve-
nience we set the constant angle to be �=4.

Smectics enjoy two types of point defects, disclinations
and dislocations. In the language of surfaces the disclina-
tions are critical or singular points on the graph of �.
Dislocations can be constructed by choosing � ¼
xþ ðb=2�Þ argðxþ iyÞ to be a tilted helicoid [19], result-
ing in a two-dimensional smectic with bending and com-
pression deformations. However, we can also build a
dislocation with vanishing compression with lines across
which the director jumps discontinuously, thus being vis-
ible under light microscopy. To this end, consider the
construction of an edge dislocation shown in Fig. 1. Two
planes meeting along a ridge are connected to two similar
planes, that meet along a ridge at a lower height (b=2 lower

where b 2 aZ is the Burgers scalar), by a portion of a
cone. The cone’s apex coincides with the end point of the
upper ridge and the transition from plane to cone is
Lipschitz C1. However, the intersection with the lower
pair of planes introduces a cusp, or curvature wall, along
which the normal changes discontinuously and the surface
is only Lipschitz C0, as is the director field. This wall
consists of part of a pair of parabolas. Taking level sets
of the surface produces a uniformly spaced smectic texture
for a dislocation. Aside from the point defect correspond-
ing to the cone’s vertex, there is a ‘‘focal’’ set consisting of
the two parabolic segments x2 ¼ bjyj þ b2=4. Recall that
in the linear theory the elastic response is concentrated in
two full parabolic regions above and below the defect [24].
The present construction only generates compression
strain on the ‘‘right’’ side of the defect. Because these walls
arise from focal curves in the three-dimensional picture,
we will interchangeably refer to them as focal lines.
Indeed, when generalized to three dimensions the two focal
points become curves as well, leading to the classic
cyclides of Dupin [14].
In the presence of a defect, BPS minimizers of (1) and

related free energies were found [10,15,17] and, for small
�=y [18], the displacement for a single defect at ðx; yÞ ¼
ð0; 0Þ, uðx; yÞ � y��ðx; yÞ, is

uðx;yÞ¼2�sgnðyÞln
�
1þðe�b=ð4�Þ �1ÞE

�
x

2
ffiffiffiffiffiffiffiffiffi
�jyjp

��
; (3)

where EðxÞ � ð�Þ�1=2
R
x
�1 dt expð�t2Þ is the error

function. The associated compression strain e for y > 0
scales as
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�

p

2
ffiffiffiffiffiffiffiffiffi
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p ðe�b=ð4�Þ � 1Þe�x2=ð4�yÞ
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2
ffiffiffiffi
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p Þ : (4)

For large �=b this reproduces the symmetric, linear strain
field. However, as �=b ! 0, we have @yu� 	ðxÞ
�ðy� x2=bÞ, half of a parabola on the side with fewer
layers, and, as shown in Fig. 2, in agreement with the focal
construction. Though the shape of the parabola is identical
in the focal and BPS solutions, we note that there is a
vertical offset of b=4 between them. Because the BPS
solution is based only on a step-function boundary condi-
tion at y ¼ 0 used to satisfy the topology at infinity, we do
not expect the near-defect details to be reproduced, but for
large x and y, the solutions agree as shown in [18].
Why should the strain be asymmetric [10]? Recall that

the nonlinear compression strain e measures the deviation
of the wave number q ¼ 2�=d from q0 ¼ 2�=a, e /
ðq� q0Þ2 and so, away from the linear regime, compres-
sion d < a is more energetic than dilation d > a. It follows
that in the equal-spacing limit, the texture will preferen-
tially distort on the dilated side. The presence of a focal
line in the BPS solution also is not a mystery.
Differentiating the BPS equation

x

y

z

FIG. 1 (color online). We construct the two-dimensional layers
by taking level sets of a piecewise developable (Gaussian
curvature K ¼ 0) surface which makes a constant angle with
the ẑ direction. From back left to close right, the surface is made
of two intersecting planes which end and attach to pieces of cone
which necessarily intersect another set of parallel planes on a
parabola.
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@yu� 1
2ð@xuÞ2 ¼ �@2xu; (5)

with respect to x yields the Burgers equation @yv�
v@xv ¼ �@2xv for v ¼ @xu. As is well known, the inviscid
Burgers equation has straight characteristics and produces
asymptotically parabolic shock curves as we have here
[25]. In comparison, the focal construction arises from
constructing characteristics of the geodesic condition
ðn � rÞn ¼ 0 [13]. Expanding this equation to quadratic
order in �n 	 n� ŷ precisely yields Burgers equation in
v ¼ �x̂ � �n.

When multiple defects lie along a line of constant y, the
BPS method allows the superposition of defects via the

Hopf-Cole transformation S ¼ eu=ð2�Þ. We can superpose
in the focal construction too: multiple edge dislocations
can be constructed by repeating the procedure described
for Fig. 1. For example, in Fig. 2 we show the construction
for a pair, both located at the same value of y. Note that
there are now new features: in addition to parabolic focal
curves, there are regions of the surface where cones inter-
sect cones and, by definition, this happens along hyper-
bolas. As we show in Fig. 3, it is also possible to construct
arbitrary focal textures in which the dislocations no longer
lie at the same value of y: when lines meet circles they
intersect on parabolas, when circles meet circles they
intersect on a hyperbola.
How does the BPS solution fare? Again we begin with

the deformations for large �=y, where straightforward
numerical analysis shows that hyperbolas are in the strain
field

S ¼ 1þ ðeb1=4� � 1ÞE
�
x� x1
2

ffiffiffiffiffiffi
�y

p
�

þ eb1=4�ðeb2=4� � 1ÞE
�
x� x2
2

ffiffiffiffiffiffi
�y

p
�
; (6)

corresponding to a pair of dislocations [17]. Indeed, Fig. 2
shows remarkably good agreement between the focal con-
struction and the BPS solution, including the details of the
hyperboas and the merging of the two focal curves.
We also compute ‘‘exact’’ solutions for the level sets

�ðx; yÞ ¼ y� uðx; yÞ, shown as dark solid and dashed
lines in Fig. 2, where the initial condition uðx; 0Þ is given
by the phase field at y ¼ 0 in the focal construction. As
expected from the asymptotic solution, the BPS evolution
respects the parabolic cusps in the focal construction,
deforming most to the left of the cusps but not on the right.
This is to be expected; the deformation preferentially
smooths out the higher curvature side and spreads the
strain ‘‘inside’’ the parabolic region in agreement with
the predictions of linear elasticity. In BPS evolution, the
quantities S
 ¼ expf
u=ð2�Þg satisfy the extremal equa-
tions @yS
 ¼ 
�@2xS
 [15,17]. The evolution has an in-

herent directionality: BPS evolution relaxes Sþ to flat
layers above the dislocation and S� below the dislocation.
Therefore, a dislocation at y ¼ 0 requires the BPS evolu-
tion to change directionality on either side of the line at
y ¼ 0. Similarly, it is possible to find the textures gener-
ated by multiple dislocations, as long as they lie along the
y axis.
When defects sit at different values of y, we have to be

more careful when � > 0. It is instructive to consider the
difficulty in detail. First, consider the focal construction
shown in Fig. 3 (dashed lines). In the vicinity of each
dislocation, we expect the solutions at finite � to be ap-
proximated by BPS evolution. Above and below both
dislocations, there is no difficulty constructing a valid

FIG. 2 (color online). Comparison of focal and BPS construc-
tions: the dashed lines show the layers from the focal construc-
tion in Fig. 1 for the layers on one side of (a) one or (b) two
dislocations. The solid curves are level sets of � ¼ y� uðx; yÞ,
where u is determined by BPS evolution, starting with the first
layer of the focal construction, for � ¼ 0:05 and � ¼ 0:1. The
background is shaded according to the compression energy of
the asymptotic BPS solution, Eq. (3), for � ¼ 0:05. The para-
bolic focal line is y ¼ 
ðx2=b� b=4Þ; we use the vertical offset
in the BPS solution [10,17]. (c) The focal construction for two
dislocations, built by attaching two single dislocations as in
Fig. 1. Note that now some of the focal lines arise from the
intersection of cones with cones and are pieces of hyperbolas,
not parabolas.
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BPS evolution since the BPS evolution directions agree.
The layers between the two dislocations, however, must
evolve upward on the left and downward on the right. We
can reconcile this discrepancy by noting that the parabolic
cusp between dislocations in the focal texture also forms a

natural division between upward and downward evolution.
As shown in Fig. 3, we evolve upward on the left of the
parabolic cusp using the displacement for the lower dis-
location as the initial condition. On the right, we evolve
downward using the phase field for the upper dislocation as
an initial condition. The result of evolving upward and
downward as indicated by the arrows in Fig. 3 is shown
as solid layers. The layers arising from BPS evolution of
opposite directionality meet naturally at the parabolic
cusps without further adjustment because the deformation
field is strongly asymmetric, in this case confined to the left
of the parabolic cusp. Were this not to occur, we could, of
course, impose continuity of the layers at the cusp by
setting the displacement of the upward evolution equal to
that of the downward evolution. The success of the focal
method hinges on the asymmetry of the distortion field for
small �. Once we have constructed the shape of the layer
on either side of the two dislocations, we may continue the
evolution out to infinity. Again, the BPS evolution pre-
serves the underlying structure of the cusps of the focal
textures and the regions of maximum strain (and layer
deviation) occur just to the left of the cusps. As long as
the defects are further apart than �, this procedure should
be reliable. It would be interesting to consider the ener-
getics of different focal constructions that result in the
same topology but with differing domain structure includ-
ing the germs and bâtonnets considered in [16].
In summary, we have developed a focal construction for

multiple (and arbitrary) configurations of dislocations in a
smectic. This construction uncovers a deep relationship
between the BPS evolution of single and multiple disloca-
tions and the focal construction. Using the naturally occur-
ring cusps in the focal construction, we are able to develop
BPS solutions for dislocations with layers between them
that account for the geometric nonlinearities in the elastic
strain.
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