
Charge Transport in Weyl Semimetals

Pavan Hosur,1 S. A. Parameswaran,1 and Ashvin Vishwanath1,2

1Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
2Materials Science Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, USA

(Received 18 October 2011; published 24 January 2012)

We study transport in Weyl semimetals with N isotropic Weyl nodes in the presence of Coulomb

interactions or disorder at temperature T. In the interacting clean limit, we determine the conductivity

�ð!; TÞ by solving a quantum Boltzmann equation within a ‘‘leading log’’ approximation and find it to be

proportional to T, up to logarithmic factors arising from the flow of couplings. In the noninteracting

disordered case, we compute the Kubo conductivity and show that it behaves differently for ! � T and

! � T: in the former regime we recover a previous result, of a finite dc conductivity and a Drude width

vanishing as NT2; in the latter, we find that �ð!; TÞ vanishes linearly with! with a leading term as T ! 0

equal to the clean, free-fermion result: �ðNÞ
0 ð!; T ¼ 0Þ ¼ N e2

12h
j!j
vF

. We compare our results to transport

data on Y2Ir2O7 and comment on the possible relevance to recent experiments on Eu2Ir2O7.
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There has been a surge of recent activity studying Dirac
excitations in two-dimensional media, most famously gra-
phene [1]. A natural question is whether there are analogs
in three dimensions, with a vanishing density of states at
the chemical potential and linearly dispersing excitations.
It has long been known that touchings between a pair of
nondegenerate bands are stable in three dimensions, and
typically have linear dispersion. Near these, electronic
excitations are described by an analog of theWeyl equation
of particle physics, which describes two-component chiral
fermions [2–4]. Hence these states have been dubbedWeyl
semimetals (WSMs) [5].

To remove a band touching (or Weyl node) one neces-
sarily must connect to another node. This is in contrast with
two dimensions: graphene’s nodes can be gapped by differ-
ent intranode perturbations that break inversion (I) or time
reversal (T ) symmetry. The enhanced protection in three
dimensions is due to a topological property of the nodes—
they are sources (monopoles) of Chern flux in the Brillouin
zone (BZ). This momentum space topology is associated
with several physical phenomena. In particular, it was
recently realized [5] that unusual surface states will result
as a consequence of the band topology. These take the form
of Fermi arcs that connect the projections of the nodes onto
the surface BZ. Such topological properties are sharply
defined as long as one can distinguish band touching
associated with opposite Chern flux. The presence of trans-
lation symmetry, and hence conserved crystal momenta, is
sufficient to protect these defining properties since the
nodes are separated in the BZ. In principle one needs
perfect crystalline order to define these phases; in practice,
smooth disorder that only weakly mixes nodes is expected
to have little effect. Other manifestations of the band
topology include an anomalous Hall effect [6,7] that is
tied to the momentum space displacement between nodes,
and magnetoresistance arising from the Adler-Bell-Jackiw
anomaly of Weyl fermions [4,8].

Physical realizations of WSMs require nondegenerate
bands to touch; therefore, spin degeneracy must be lifted
(by either spin-orbit interactions or magnetic order), and
either T or I must be broken: otherwise, all bands would
be doubly degenerate. We further require that the Fermi
‘‘surface’’ consists exactly of the Weyl nodes. In
T -breaking realizations where I is unbroken, a simple
‘‘parity criterion’’ applied to eight T -invariant momenta
in the BZ can be used to diagnose the existence of Weyl
nodes [9]. In [5], certain pyrochlore iridates A2Ir2O7 (A ¼
Y or Eu) were proposed to be magnetically ordered WSMs,
with N ¼ 24 Weyl points, all at the Fermi energy; [10]
reached similar conclusions but with N ¼ 8. Alternate
proposals include HgCr2Se4 in the ferromagnetic state
[11] and topological insulator-ferromagnet heterostruc-
tures [7], with N ¼ 2, the minimum allowed.
Motivated by the availability of transport data on the

iridates [12,13], we study the electrical conductivity of an
idealized model of a WSM, with an even number N of
isotropic Weyl nodes characterized by the same dispersion,
with N=2 nodes of each chirality as required by topology
[5,14]. The leading behavior of the conductivity � pro-
vides insight into the dominant scattering mechanism in
the system, as in three dimensions, � has dimensions of
inverse length in units of e2=h and the appropriate length
scale is set by the quasiparticle mean free path. In the
absence of impurities and interactions we expect the free-

fermion result, �ðNÞ
0 ð!Þ ¼ N e2

12h
j!j
vF

; we demonstrate how

this is modified in two cases.
(i) In clean undoped systems with Coulomb interactions,

current is carried equally by counterpropagating electrons
and holes and can be relaxed via interactions alone.
Solving a quantum Boltzmann equation (QBE) we find a
finite conductivity proportional to the temperature T (up to
logarithmic factors), as expected of a quantum critical
system [15], where T is the sole energy scale,
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�ðNÞ
dc ðTÞ ¼

e2

h

kBT

@vFðTÞ
1:8

�2
T ln�

�1
T

: (1)

Here vFðTÞ ¼ vFð�0=�TÞ2=Nþ2 and �T ¼ �0½1þ
ðNþ2Þ�0

3� lnð @�kBTÞ��1 are the Fermi velocity and fine structure

constant renormalized to the scale of the temperature T, �
is a momentum cutoff set by the separation between the
Weyl nodes, and vF and �0 ¼ e2="@vF are the corre-
sponding ‘‘bare’’ values at the microscopic scale [16].

(ii) In the presence of impurities, power counting shows
that white-noise disorder is an irrelevant perturbation, and

a naive expectation is that the clean result �ðNÞ
0 is repro-

duced. However, the result is more interesting: by evaluat-
ing a standard Kubo formula, we find that the finite-
frequency conductivity exhibits different behaviors for
! � T and ! � T: in the former regime we find in
agreement with [7] a finite Drude-like response with a
peak width vanishing as NT2; in the latter, we recover

�ðNÞ
0 as the leading behavior, which is universal and inde-

pendent of disorder. We also determine the manner in
which the conductivity interpolates between these limits.

Previous studies of 3DDirac points have assumedLorentz
invariance [17] or worked at a topological phase transition
between insulators [18].Althoughourwork differs fromboth
of these situations–instantaneous Coulomb interactions
break Lorentz invariance, and we study a stable phase–there
are sufficient parallels that a similar ‘‘leading log’’ approxi-
mation suffices to solve the QBE. Coulomb interactions also
lead to a finite dc conductivity in clean graphene–the 2D
analog of a WSM–but the leading log approximation fails
here and more analysis is needed [15,19].

Model.—In a WSM, the electronic dispersion about a
Weyl node is generically of the form HWeyl ¼ u � k1þP3

a¼1 v
a � k�a, where �a are the Pauli matrices. The ve-

locities satisfy v1 � ðv2 � v3Þ � 0, and the Chern number
�1 (‘‘chirality’’) associated with the Weyl node is sgnðv1 �
ðv2 � v 3ÞÞ. For simplicity, we shall drop the term propor-
tional to identity and assume isotropic dispersion; relaxing
this assumption should only produce small corrections.
The Hamiltonian for a system of N identically dispersing
Weyl nodes (‘‘flavors’’) with Coulomb interactions and
disorder may then be written as H ¼ H0 þHI þHD,
with (repeated indices summed)

H0 ¼
X
a

Ha ¼
X
a

Z
k
c y

k;að�avFk � �Þc k;a ;

HI ¼ 1

2

Z
k1k2q

VðqÞc y
k2�q;a�c k2;a�c

y
k2þq;b�0c k1b�

0 ;

HD ¼
Z
r

X
a

c y
a ðrÞUðrÞc aðrÞ;

(2)

where c k;a is a two-component spinor in the (pseudo)spin

indices �;�0, a; b ¼ 1; . . . ; N index the flavors, vF is the
Fermi velocity, which we set to unity, �a ¼ �1 is the

chirality of the ath Weyl node, VðqÞ ¼ 4�e2

"q2
describes the

Coulomb interaction in a material with dielectric constant
", UðrÞ is a random potential with white-noise correlations
hhUðrÞUðr0Þii ¼ niv

2
0�ðr� r0Þ, where v0 characterizes the

strength of the individual impurities and ni their concen-

tration,
R
k �

R
d3k
ð2�Þ3 , and we have written H0 assuming

that the Fermi level is at the Weyl nodes, which is the only
case studied in this Letter. Here and below we set @ ¼
kB ¼ jej ¼ 1 and define � ¼ 1=T.
Conductivity with interactions.—Critical systems–such

as graphene and the WSM at neutrality–are exceptions to
the rule that disorder is essential for a finite conductivity,
since they support current-carrying states in which parti-
cles and holes transport charge with no net momentum by
moving exactly opposite to each other. In contrast to
conventional finite-momentum charge transport, such de-
viations from equilibrium can relax in the presence of
interactions alone, leading to a finite conductivity.
We study transport in an interacting WSM by solving a

QBE for the thermal distribution function of quasiparticle
states. In doing so, it is convenient to first calculate the
current from a single node (but interacting with all the
nodes) before making the leap to the current carried by all
N nodes. We focus on a node with flavor a, which we take
to have �a ¼ 1. The single-quasiparticle states are ob-
tained by diagonalizing Ha: c k;a ! Wyc k;a � �k;a,

Ha ! WHaW
�1 ¼ R

k �vFk�
y
k�a�k�a, and are labeled by

their helicity � (the eigenvalue of � � p̂). From now on we
will suppress the index a. In general, operators correspond-
ing to various transport properties are not diagonal in the
helicity; diagonal contributions correspond to motion of
particles and holes in the applied field and may be charac-

terized by appropriate distribution functions f�ðk; tÞ ¼
h�y

k��k�i, while the off-diagonal terms (�y
k��k	) describe

the motion of particle-hole pairs. For ! � T, contribu-
tions of the latter to transport are expected to be sup-
pressed, essentially by Pauli exclusion[16], and we drop
them forthwith. In this approximation, it is therefore suffi-
cient to solve the QBE for quasiparticle distribution func-
tions f�ðk; tÞ, subject to an external force F,

�
@

@t
þ F � rk

�
f�ðk; tÞ ¼ �w½f�ðk; tÞ�; (3)

wherew is the rate at which quasiparticles scatter out of the
state (�;k) at time t and captures the effect of interactions.
Our goal will be to determine the steady-state form of the
nonequilibrium quasiparticle distribution function. We will
restrict ourselves to linear response in F; i.e., we assume
that the deviation of f� from equilibrium is small. The
result is a linear functional equation which may be recast as
a variational problem.We solve the latter approximately by
identifying leading log contributions, which dominate the
relaxation of the observable under consideration. As men-
tioned, we assume that the constants that enter the solution

PRL 108, 046602 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

27 JANUARY 2012

046602-2



of (3) are renormalized to the energy scale of interest,
namely, T.

Neglecting particle-hole pair contributions, the current

is JðtÞ ¼ �R
khc y

k�c kit ¼ �P
�¼�

R
k �k̂f�ðk; tÞ. For a

weak applied electric field EðtÞ, the deviation of
f�ðk; !Þ ¼ R

dtfðk; tÞei!t from the equilibrium distribu-
tion function f0�ðkÞ ¼ ð1þ e��kÞ�1, and hence the con-

ductivity �ð!;TÞ, can be parametrized [20] in terms of a
dimensionless, isotropic function gðk;!Þ:

f�ðk; !Þ ¼ 2��ð!Þf0�ðkÞ þ ��2k̂ �Eð!Þ
� ½f0�ðkÞf0��ðkÞ�gðk;!Þ; (4)

�ð!; TÞ ¼ 2�2
Z
k

�
k2x
k2

½f0þðkÞf0�ðkÞ�gðk;!Þ
�
: (5)

It therefore remains only to determine the function gðk;!Þ,
to which we now turn. Inserting (4) into (3), and working

to linear order in E, we find �ði�!gðk;!Þ þ
1Þf0þðkÞf0�ðkÞk̂ ¼ Ĉ½gðk;!Þk̂�, where Ĉ is the collision

operator, a linear functional of gðk;!Þk̂ given in [16].
This is equivalent to the variational problem of extremizing
the quadratic functional [15,17–19]

Q½g� �
Z
k

�
1

2
gðk;!Þk̂ � ðĈ½gðk;!Þk̂�Þ

þ f0þðkÞf0�ðkÞ
�
i!

g2ð!; kÞ
2

þ gð!; kÞ
��

; (6)

in which we have rescaled all momenta and frequencies by
T. A key simplification, known as the leading log approxi-
mation (LLA) stems from the power-law nature of the
Coulomb interaction: as a result of this, logarithmically

divergent small-momentum scattering dominates Ĉ. We

may write Ĉ ¼ Ĉ0 þ Ĉ1, which when thought of as linear

functionals of gk̂ have eigenvalues of Oð�2 log�Þ and
Oð�2Þ, respectively. In the LLA we approximately opti-

mize Q by choosing gk̂ in the space spanned by eigen-

states of Ĉ0; as shown in [16] the choice g ¼ k	ð!Þ yields

Q½k	ð!Þ� 
 4

"2

�
i!½	ð!Þ�2 7�

4

30
þ 9	ð!Þ
ð3Þ

�

� 4�3

9"2
½	ð!Þ�2N�2 ln��1; (7)

optimized by 	ð!Þ ¼ 81
ð3Þ
2�3 ð�i! 21�

10 þ N�2 ln��1Þ�1.

Finally, we observe that the flipped chirality of half the
nodes is unimportant as they all give the same contribution
to �; thus, using the result for 	ð!Þ in (5) and multiplying
by N we find the result for N nodes [21],

�ðNÞð!; TÞ ¼ N
e2

h

1:8

�i @!
kBT

6:6þ N�2 ln��1

�
kBT

@vF

�
: (8)

Note that in the case of graphene, the LLA fails because the
log divergence stems from a phase space effect due to

enhanced scattering of collinear particles, which cannot

relax a current. Thus, the eigenstates of Ĉ0 do not contrib-
ute to the relaxation, which therefore occurs only via

subleading, noncollinear scattering, i.e., Ĉ1 [15,19]. In

3D, Ĉ0 includes noncollinear and thus current-relaxing
processes, so that the LLA analysis is sufficient [17,18].
In the dc limit, (8) reduces to (1), which we may ration-

alize using the Einstein relation, �dc ¼ e2D @n
@� , where

D ¼ v2
F� is the diffusion constant, which depends on the

scattering time � and @n
@� � NT2=v3

F is the density of states,

at energy 
 ¼ T, up to numerical factors. We may estimate
� from three observations: the scattering rate ��1 is pro-
portional to (i) N, the number of flavors contributing to the
scattering, (ii) �2, which is essentially the cross section for
scattering, and (iii) T, which is the single energy scale in
the dc limit. Thus, ��1 � N�2T, which gives (1), modulo
logarithms. This provides an estimate of the frequencies
over which transport is collision dominated and the pre-
ceding calculation is valid: in order for collisions to pro-
duce relaxation, we require ! � ��1, which occurs for
@!=kBT � N�2.
Conductivity with impurities.—We turn now to the con-

ductivity of the noninteracting, disordered system. We
restrict to the case of scattering off random point impuri-
ties, characterized by viðrÞ � v2

0�ðrÞ and the locations of

which we shall assume are uncorrelated, hh�iðrÞ�iðr0Þii /
�ðr� r0Þ. With these assumptions, we are led to HD in (2)
with UðrÞ � R

dr0viðr� r0Þ�iðr0Þ. As before, we first
compute the conductivity for a single node. Assuming
that the impurities are sufficiently dilute that the
Born approximation is valid, the quasiparticle lifetime
due to impurity scattering from a single node is

given by 1
�ð!Þ ¼ �2 Im�retð!; kÞ, where �ret

� ð!;kÞ ¼
niv

2
0

R
d3k0
ð2�Þ3 F ��0 ðk;k0ÞGð0Þ

�0 ð!; k0Þ is the retarded self-

energy, Gð0Þ
� ð!; kÞ ¼ ð!þ i�� �vFkÞ�1 is Green’s func-

tion for a noninteracting Weyl fermion with helicity �, and
the form factor from the overlap of helicity eigenspinors,
F ��0 ðk; k0Þ ¼ 1

2 ð1þ ��0 cos�kk0 Þ to leading order. We find

[16] 1
�ð!Þ � 2��gð!Þ, where gð!Þ ¼ !2

2�2v3
F

is the density of

states and � ¼ 1
2niv

2
0 characterizes the strength of the

impurity potential.
To evaluate the conductivity we use the Kubo formula,

�ð!; TÞ ¼ � 1

!
lim
q!0

Im�ret
xx ð!; jqjÞ; (9)

where �ret
��ð!; qÞ is the retarded response function which

for a system of linear dimension L is defined to be

�ret
��ð!;qÞ¼� i

L3

Z 1

0
dtei!th½J�ð�q; tÞ;J�ðq;0Þ�i; (10)

with x� ¼ ðt; rÞ, p� ¼ ð!;pÞ, and J�¼ð�c yc ;JÞ. From
gauge invariance �ret

��ð!;qÞ¼�retð!;jqjÞð����q�q�
q2

Þ, so
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that (suppressing q ¼ 0), �ð!; TÞ ¼ � 1
! Im�retð!Þ ¼

� 1
3! Im�ret

��ð!Þ. Some algebra yields [16]

�ð!;TÞ ¼ 4

3
e2v2

F

Z d


2�

½fTð
Þ � fTð
þ!Þ�
!

� X
�;�0

Z d3k

ð2�Þ3 ImGret
� ð
þ!; kÞ ImGret

�0 ð
; kÞ;

(11)

where fTð!Þ ¼ ½e!=T þ 1��1 is the Fermi-Dirac function
and we have used the retarded helicity-basis Green’s func-
tion dressed with disorder lines, Gret

� ð!; kÞ ¼ ½!�
�vFkþ i=2�ð!Þ��1. After a tedious calculation, we may

write �ð!; TÞ ¼ e2v2
F

h� J ð!̂; T̂Þ, where T̂ ¼ T=!0, !̂ ¼
!=!0, so that fTð!Þ ¼ fT̂ð!̂Þ, !0 ¼ 2�v3

F=� is a charac-

teristic scale set by the disorder strength, and J ð!̂; T̂Þ ¼
4
3

R
d
̂
2�

½fT̂ ð
̂Þ�fT̂ ð
̂þ!̂Þ�
!̂ Ið
̂þ !̂; 
̂Þ, with I a complicated ra-

tional function [16].
In our model disorder can scatter between nodes, so

1=�ð!Þ acquires a factor of N when N > 1; in common
with the interacting case, � also has an overall prefactor of
N. From these it is easy to show that for N nodes,

�ðNÞð!; TÞ ¼ e2v2
F

h�
J
�
N

!

!0

; N
T

!0

�
; (12)

which is identical to the N ¼ 1 result (Fig. 1) upon rescal-
ing !0 ! !0=N.

While in general we integrate (12) numerically, in cer-
tain limits an analytic treatment is feasible. For ! � T,
fT̂ð
̂Þ � fT̂ð
̂þ !̂Þ 
 �!̂f0ð
̂Þ. Expanding I in powers of
!̂ and resumming only terms dominant as 
̂ ! 0, we
recover the result of Burkov and Balents [Eq. (15) of
[7]]: namely, a Drude-like response with a width vanishing

as NT2, and a finite dc limit of
2e2v2

F

3h� .

In the opposite limit, T ! 0, at finite ! we may replace
the Fermi functions by step functions, which yields

�ðNÞð!Þ 
 N
e2

12h

!

vF

�
1� 16N�!

15�2v3
F

þO
�
N2!2

!2
0

��
: (13)

The leading term is universal and independent of disorder,

and is simply �ðNÞ
0 . Both regimes are captured in Fig. 1,

which shows �ð!; TÞ for ! & !0, beyond which the Born
approximation is insufficient.
Experiments.—In [12] the dc resistivity of polycrystal-

line Y2Ir2O7 was found to vary with temperature as
�dcT 
 130 � � cm � K over 10 K & T & 170 K, which
is reminiscent of our result with interactions (1).
Accordingly, we compare this data with a model of a clean
WSM with N ¼ 24 [5], as shown in Fig. 2. We find rather
good agreement with experimental data for physically
reasonable parameter choices, shown inset. Very recently,
transport in single crystals of another pyrochlore iridate,
Eu2Ir2O7, has been studied [13] under pressure for 2 K &
T & 300 K; at low pressures �2:06–6:06 GPa, �dcðTÞ re-
sembles Fig. 2, consistent with WSM behavior.
Conclusions.—The conductivity of WSMs thus exhibits

a rich variety of behavior on varying frequency and tem-
perature, in both the interacting clean and noninteracting
disordered limits, as shown in Figs. 1 and 2. In particular,
its nontrivial dependence on N is sensitive to the strength
of the interactions; with just disorder, we find a striking
difference between the ! � T and ! � T regimes, with
the T ! 0 ac response dominated by a universal, disorder-
independent contribution. While the limited existing dc
conductivity data on the candidate iridates broadly agrees
with our theory in the clean limit, we caution that more dc
and ac conductivity measurements on single crystals with
controlled disorder are required to make a rigorous
comparison. Theoretically, the interplay of disorder and
interactions, and corrections to the isotropic node approxi-
mation, still need to be considered. In particular, it would
be striking if the distinct behavior of the disordered system
across the different frequency regimes survives the inclu-
sion of interactions. A simultaneous treatment of disorder
and interactions is, as always, challenging and is left open
for future work.
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FIG. 1 (color online). Frequency-dependent conductivity of a
single Weyl node with disorder (constants defined in the text.)
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