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We study a one-orbital Anderson impurity in a two-dimensional electron bath with Rashba spin-orbit

interactions in the Kondo regime. The spin SU(2) symmetry-breaking term couples the impurity to a two-

band electron gas. A Schrieffer-Wolff transformation shows the existence of the Dzyaloshinsky-Moriya

interaction away from the particle-hole symmetric impurity state. A renormalization group analysis

reveals a two-channel Kondo model with ferro- and antiferromagnetic couplings. The parity-breaking

Dzyaloshinsky-Moriya term renormalizes the antiferromagnetic Kondo coupling with an exponential

enhancement of the Kondo temperature.
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The search for new materials and architectures appro-
priate for spintronic and quantum computing devices [1]
has renewed the interest on the study of Rashba spin-orbit
interactions (RSO) [2] in low-dimensional systems. For
systems on surfaces, the natural lack of inversion symme-
try makes RSO ubiquitous and particularly relevant for
studies of surface-related magnetic properties [3].
Research on this area has been driven by rapid develop-
ments of STM techniques that have made possible the
design and manipulation of atomic structures on surfaces
and study charge and spin physics in two-dimensional (2d)
systems. Among the many structures of interest, several
groups have focused on the physics of isolated magnetic
impurities on metallic substrates to investigate signatures
of Kondo physics in two dimensions [4–14]. While these
studies have unveiled new physics, they have not addressed
the relevance of spin-orbit (SO) interactions possible on
many metallic substrates serving as reservoirs for the
magnetic impurity. The fact that these interactions can
profoundly modify the spin structure on a surface was
demonstrated in spin-polarized measurements of Mn im-
purities on W substrates [15]. Images and characterization
of beautiful chiral spin-ordered structures are indeed
understood in terms of the strong SO coupling on the
surface. Moreover, recent investigations of magnetic im-
purities on graphene [16,17], the ultimate two-dimensional
system, pose the question of the influence of the underlying
graphene substrate on measured magnetic properties.

The role of SO interactions in the Kondo regime of
magnetic impurities embedded in metallic hosts has been
a topic of debate since the early measurements of electrical
resistivity in CuMn compounds doped with Pt, carried out
by Gainon and Heeger [18]. The reduced divergence in
resistivity, interpreted as due to the presence of SO scat-
terers, was taken as evidence for the suppression of the
Kondo effect. Much theoretical and experimental activity
followed with rather inconclusive results [19]: while some

works supported the findings of Gainon and Heeger, others
reached opposite conclusions. Noting that SO interactions
preserve time-reversal symmetry, Meir and Wingreen [20]
showed that the Kondo regime is unaffected by SO inter-
actions in the infinite Hubbard-U limit. More recently,
however, a solution for a two-dimensional Kondo model
in the presence of SO interactions predicts that the Kondo
temperature increases by a multiplicative factor propor-
tional to the SO coupling constant [21]. Thus, the question:
what is the role of SO interactions in the Kondo regime for
two-dimensional systems? remains controversial. The pur-
pose of this Letter is to provide a definitive answer by
presenting a solution to the model of a one-orbital
Anderson magnetic impurity [22] embedded in a two-
dimensional metallic host with RSO interactions. We
show that the presence of these interactions reduces the
Anderson Hamiltonian to an effective two-band Anderson
model coupled to the impurity. By an appropriate
Schrieffer-Wolff transformation [23], the Hamiltonian re-
duces to an effective two-channel Kondo model plus a
Dzyaloshinsky-Moriya (DM) [24] interaction term. The
renormalization group analysis for this effective
Hamiltonian reveals that the impurity couples to the bath
with ferro- and antiferromagnetic couplings, with the one-
channel Kondo model as the fixed point at low energies.
More surprisingly, as we show below, the presence of DM
interactions, which vanish at half-filling and at the infinite
Hubbard-U limits, introduces an exponential increase in
the value of the Kondo temperature.
The model.—The Anderson Hamiltonian of a two-

dimensional electron gas in the presence of RSO interac-
tions is given by H ¼ H0 þHU þHhyb þHRSO. Here,

H0 ¼ P
ks"kc

y
kscks þ

P
s"dc

y
dscds describes free electrons

with momentum k and spin s and one spherically symmet-
ric impurity level with energy "d. The Hubbard interaction

term is given by HU ¼ Und"nd#, with nds ¼ cydscds as the
impurity electron density. The hybridization term
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Hhyb ¼ P
ksVkc

y
kscds þ H:c: describes the coupling be-

tween the impurity and bath electrons in the absence of
the RSO interaction. We consider spin-1=2 electrons for
the bath and the impurity site and (without loss of general-
ity) Vk to be real and independent of the electron spin. The
RSO interaction is described by

HRSO ¼ X
k

�Rðky þ ikxÞcyk"ck# þ H:c:

¼ X
k

�Rke
�i�kcyk"ck# þ H:c:; (1)

with �k defined by kx ¼ �k sin�k, ky ¼ k cos�k, and k ¼
j ~kj. This model allows one to study the effect of the RSO
with variable strength �R. Notice that the effect of local
RSO interactions (acting only at the impurity atom) has
been the topic of previous studies [25–31] but is not
considered in the present model. An experimental setup
where this model is realized consists, for example, of
isolated magnetic impurities (Co, Mn, etc.) deposited on
the surface of materials with high RSO interactions such as
Au(111).

In the angular momentum basis, the electron operators
are

cks ¼
Xm¼1

m¼�1

eim�kffiffiffiffiffiffiffiffiffi
2�k

p cmks; cmks ¼
ffiffiffiffiffiffiffi
k

2�

s Z
d�ke

�im�kcks: (2)

The canonical transformation

cmþ1=2
kh ¼ ðcmk" þ hcmþ1

k# Þ= ffiffiffi
2

p
(3)

diagonalizes the bath Hamiltonian in the presence of RSO.
Here, h ¼ �1 and j ¼ mþ h=2 are the chirality and
angular momentum quantum numbers, respectively.
These operators satisfy standard anticommutation relations

fðcmþ1=2
kh Þy; cm0þ1=2

k0h0 g ¼ �k;k0�h;h0�mþ1=2;m0þ1=2.

The corresponding band energies are "kh ¼ "k þ �Rkh.
After the transformation, the total Hamiltonian is

H ¼ X
khm

"khðcmþ1=2
kh Þycmþ1=2

kh þHimp þ
X
khm

~Vk�m;0ffiffiffi
2

p

� ½ðcmþ1=2
kh Þycd" þ ð�1Þ½ð1�hÞ=2�ðcm�1=2

kh Þycd# þ H:c:�;
(4)

where Himp ¼
P

s"dc
y
dscds þHU, cds is the operator for

the local orbital in the angular momentum basis, and ~Vk ¼
Vk

ffiffiffiffiffi
2�
k

q
. Thus, the RSO term produces an effective two-band

(h ¼ �1) Anderson problem with the impurity coupled to
j ¼ �1=2 channels in each band.

The Kondo regime.—To describe the Kondo regime, we
perform a Schrieffer-Wolff transformation (SWT) [23]. As
in the usual one-impurity Anderson model, the SWT is
obtained by requiring the effective Hamiltonian Heff ¼
eSHe�S not to contain an Hhyb term to first order. The

resulting Heff contains H0 þHU with renormalized pa-
rameters, plus an exchange Hamiltonian. Using Eqs. (3)
and (4), we find S to be given by [32]

S ¼ X
kh

Tkh½ðc1=2kh Þycd" þ ðc�1=2
kh Þycd#� � H:c:;

Tkh ¼ Vkðnd �hGkh þ gkhÞ;
Gkh ¼ 1

"kh � "d �U
� 1

"kh � "d
;

gkh ¼ 1

"kh � "d
;

(5)

where we defined nd �h ¼ nd#ðnd"Þ, for h ¼ 1ðh ¼ �1Þ, and
�h ¼ �h. As in the usual case, S involves the Green’s
functions of free particles moving in a bath that contains
the localized impurity level. Notice that this transformation
reduces to the standard form for the SWT, written in the
chiral basis, when the RSO coupling is zero (�R ¼ 0). The
SWT reveals that the bath fermions relevant in the Kondo
regime are

c1=2k� ¼ ðc0k" � c1k#Þ=
ffiffiffi
2

p
; c�1=2

k� ¼ ðc�1
k" � c0k#Þ=

ffiffiffi
2

p
; (6)

emphasizing the conservation of the total angular momen-
tum in the z direction: a spin flip process is compensated
by changes in the orbital angular momentum channels
m ¼ 0;�1. Once the relevant modes are identified, it is
more convenient to return to the original basis to describe
band electrons and introduce standard spinor notation. The
resulting effective Hamiltonian contains two different
terms: Heff ¼ P

k;k0 ðH K þH DMÞ. The first, equivalent

to the standard Kondo Hamiltonian, is

H K ¼ Jkk0 ðskk0 � S� 1
4�

c
kk0�

dÞ; (7)

where skk0 ¼ 1
2 c

y
ks�

ss0ck0s0 and �c
kk0 ¼ cyks�

ss0
0 ck0s0 . The cor-

responding definitions for the impurity operators are S ¼
1
2 c

y
ds�

ss0cds0 and �
d ¼ cyds�

ss0
0 cds0 . Here, ð�; �0Þ are the stan-

dard Pauli matrices. The Kondo coupling is given by
Jkk0 ¼ �VkVk0 ðGkþ þGk� þGk0þ þGk0�Þ=2, is aver-
aged over the chirality quantum number h, and is spin-
independent. One can verify that H K reduces to the
standard Kondo Hamiltonian when �R ¼ 0. In the
angular momentum basis (2), this Hamiltonian

reads H K � Jkk0
ffiffiffiffiffiffiffi
kk0

p ðs0
kk0 � S� 1

4�
c
kk0�

dÞ, with s0
kk0 ¼

1
2 c

0y
ks �

ss0c0
k0s0 and �kk0 ¼ c0yks �

ss0
0 c0

k0s0 , i.e., involving only

them ¼ 0mode. In this expression, the angular integration
has already been carried out.
After some algebra [32], the expression for the second

term, H DM, is

H DM ¼ i�RkFCðk� k0Þ � ðskk0 � SÞ; (8)

which corresponds to the DM interaction [24]. Here, k�
k0 is a vector in the 2d plane and skk0 and S are the bath and
impurity spin vectors, respectively. The expression has
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been evaluated for scattering processes near the Fermi
surface where "kh � 0 and k � k0 ¼ kF up to first order
in �R, with C ¼ Cð"d; UÞ. It is important to remark that C
vanishes in the limit ofU ! 1 and when the impurity state
is particle-hole symmetric, i.e., "d ¼ �U=2, in agreement
with general time-reversal symmetry arguments [20,32].
Similar terms were found in previous works [33], when the
hybridization coupling Vk is made to be spin-dependent,
i.e., Vks. However, in these models, the DM term does not
vanish at the particle-hole symmetric point as expected.

It is also instructive to write the DM term in the angular
momentum basis [using Eq. (2) and carrying out the
angular integration part], where it reads H DM ¼
�RkFCðs�kk0 � S� 1

4�
�
kk0�dÞ, where s�kk0 ¼ 1

2 ðc0yks �ss0c2s
0

k0�s0 þ
c2syk�s�

ss0c0
k0s0 Þ and ��

kk0 ¼ ðc0yks �ss00 c2s
0

k0�s0 þ c2syk�s�
ss0
0 c0

k0s0 Þ. It is
clear that this interaction couples the m ¼ 0 and m ¼ �1
modes of band electrons (as c2sk�s ¼ c1k# for s ¼ 1

2 , etc.).

Renormalization group analysis.—To understand the
effect of the DM terms in the Kondo regime, we perform
a renormalization group (RG) analysis, assuming that
Vk � VkF and Jkk0 � JkF . The RG flow reveals the exis-

tence of an additional term involving higher energy bands
H� ¼ �ðs�

kk0 � S� 1
4�

�
kk0�dÞ, introducing a new coupling

constant �. In the angular momentum basis (after angular

integration), the expression for s�
kk0 reads s�

kk0 ¼
c2syk�s�

ss0c2s
0

k0�s0 and ��
kk0 ¼ c2syk�s�

ss0
0 c2s

0
k0�s0 . The resulting

coupled equations are

_J ¼ J2 þ �2
F=4; _� ¼ �2 þ �2

F=4;

_�F ¼ ðJ þ �Þ�F;
(9)

where �F ¼ 2C�RkF. These equations become

_J 1 ¼ J21 ;
_J2 ¼ J22 ; (10)

where J1 ¼ 1
2 ðJþ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2� þ �2

F

q
Þ, J2¼ 1

2ðJþ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2�þ�2

F

q
Þ,

J� ¼ J � �, and the ratio �F=J� ¼ constant. Equa-
tion (10) describes the RG flow of two decoupled Kondo
Hamiltonians with couplings J1 and J2. Considering an
initial condition with � ¼ 0 and an antiferromagnetic
Kondo coupling J > 0, the equations render J1 > 0 and
J2 < 0. Therefore, as temperature is lowered, J1 grows to
the strong coupling regime while J2 goes to zero, hence
reducing to the standard one-channel Kondo problem.
There is also another possible initial condition that has
J < 0 (ferromagnetic Kondo Hamiltonian). In this seem-
ingly unfavorable case for the development of a Kondo
regime, however, (10) predicts the appearance of an anti-
ferromagnetic coupling at low energies for J1 while J2
remains <0, becoming eventually zero. Note that, in both
cases, the final Kondo state is formed by the impurity
coupled to a combination of m ¼ 0 and �1 modes from
the bath.

Although the presence of RSO results on known physics
in the Kondo regime, its effect on the Kondo temperature is

quite dramatic. Away from particle-hole symmetry condi-
tions at the impurity, the DM term increases the Kondo
coupling, producing an exponential increase in the Kondo
temperature, given by

TK

T0
¼

�
T0

D

�
1�J1=J

; (11)

where T0 is the Kondo temperature in the absence of RSO
andD is the bandwidth cutoff [32]. We should note that the
change in the coupling J produced by RSO interactions is
not compensated by changes in the effective density of
states �ð�FÞ at the Fermi level. One can show that terms in
the SWT that can renormalize �ð�FÞ are of two types:
(i) those that are independent of �R and as such cannot
eliminate the effect of the DM term in J or (ii) those that
depend on �R via the renormalized value of this coupling.
As this last renormalization is mainly due to the presence
of the Hubbard term U and the DM corrections depend on
both U and "d, the correction on �ð�FÞ can not generically
compensate the change in J. These effects can be substan-
tial and significantly enhance TK. Figure 1 illustrates TK as
a function of the RSO parameter �F, changing in a clearly
superlinear fashion, unlike the linear increase expected
from density-of-state effects [21]. For a Co atom adsorbed
on graphene with SiO2 as a substrate [16], for example, T0

has been measured to be� 14 K; changing the substrate to
Au=Ni has been shown to enhance the RSO strength to
�R ’ 0:2 eV [34]. We estimate �F=J � 0:3, which would
result in a 20% increase for TK � 17 K. We emphasize that
this strong enhancement holds in the generic situation
away from particle-hole symmetry at the impurity, suggest-
ing that it should be observed in quite general situations.
Conclusion.—In summary, we have analyzed the Kondo

regime of an Anderson impurity model with RSO inter-
actions in a 2d electron gas. Because of the broken SU(2)
spin symmetry in the presence of RSO, the coupling

FIG. 1 (color online). The Kondo temperature enhancement
due to RSO grows exponentially with �F. The inset shows the
schematics of the magnetic adatom on the 2d electron gas system
with the RSO coupling, where the states for a given momentum
have a definite spin.
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between impurity and band electrons occurs via a combi-
nation of different angular momentum modes in the bath.
The resulting two-band model produces a two-channel
Kondo regime with ferro- and antiferromagnetic coupling
constants, having a standard one-channel Kondo physics as
a fixed point. We have shown, in agreement with previous
studies, that the effects of the RSO interactions vanish for
an impurity in the particle-hole symmetry point. Away
from this point, however, RSO interactions introduce dra-
matic modifications to the Kondo regime by generating a
DM term that has been missed in previous studies. The DM
term is responsible for an exponential increase in the
Kondo temperature. It is reasonable to expect that these
effects can be observed in experiments carried on with
magnetic atoms placed on the surfaces of different metals
[4,35,36] or 2d semiconductor systems [37,38], where the
strength of the RSO coupling can be varied. Other interest-
ing candidate systems are those with magnetic adatoms on
graphene [16,17], when supported by substrates that en-
hance the RSO interactions [34,39], or on top of topologi-
cal insulators [40]. Work along these lines will be reported
elsewhere.
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