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From a simple model for the driven motion of a planar interface under the influence of a diffusion field

we derive a damped nonlinear oscillator equation for the interface position. Inside an unstable regime,

where the damping term is negative, we find limit-cycle solutions, describing an oscillatory propagation of

the interface. In the case of a growing solidification front this offers a transparent scenario for the

formation of solute bands in binary alloys and, taking into account the Mullins-Sekerka instability, of

banded structures.
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The interaction of propagating extended defects with a
diffusion field frequently leads to oscillations or jerky
motions of the defects. A prime example of such an effect
is the oscillation of a solidification front, induced by the
diffusion of the solute component in a dilute binary alloy,
which is growing in the setup of directional solidification.
In a large number of metallic materials this leads to the
formation of banded structures [1], reflecting a periodic
array of layers with high and low solute concentrations
where the former ones show a dendritic microstructure.
The appearance of similar banding effects has recently
been discussed [2] in rapid solidification of colloids.

Layered structures are also generated by the oscillatory
nucleation of a solid phase under the action of a diffusion
field [3]. A related phenomenon is the oscillatory zoning,
observed in solid solutions [4] and in natural minerals [5].
Another notable scenario is that of diffusion-controlled
jerky motions of a driven grain boundary [6]. A similar
behavior of dislocations in metallic alloys leads to the
Portevin–Le Chatelier effect [7], denoting the appearance
of jerky plastic deformations. We, finally, mention the
oscillatory motion of a crack tip, which is coated by the
nucleus of a new phase [8], replacing the attached cloud of
a diffusion field.

Theoretical discussions of such effects are either of a
phenomenological type, like those in Ref. [7], and partly in
Refs. [1,2], or they rely on a Fokker-Planck [6] or a
diffusion equation with nonequilibrium boundary condi-
tions [9]. In all approaches the source of oscillatory defect
motions is identified as an unstable regime where a reduc-
tion of the driving force leads to an increase of the defect
velocity. Additional information is provided by simula-
tions, based on phase-field models for directional solidifi-
cation [10] and for nucleation [3] processes.

In the present Letter we introduce an extremely simple
but powerful model for the diffusion-induced oscillatory
motion of a planar interface, using the language adapted to
the directional solidification of a dilute binary alloy. A
major advantage of our approach is that it allows a trans-
parent and, to a large extend, analytical evaluation. This
includes a readjustment of the stability analysis by
Merchant and Davis [11] who discovered an oscillatory
instability, similar to that discussed earlier by Coriell and
Sekerka [12]. Also included is a clarifying analysis of the
so far barely understood low-velocity sections of the cyclic
trajectories, identified by Carrard et al. [1] and by Karma
and Sarkissian [9]. The limit-cycle behavior, describing the
oscillations of the interface deep inside the unstable re-
gime, is, finally, in remarkable agreement with the simu-
lation results by Conti [10].
Because of the restriction to a planar interface, our

model is a one-dimensional version of the capillary-wave
model, derived in Ref. [13] from a phase-field model. It is
given in dimensionless form by the set of equations

H ¼ �
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F ¼ FP �m2½ZðtÞ � vPt�

(1)

for the interface position ZðtÞ, and for the excess solute
concentration Cðz; tÞ relative to its value CS � 1 in the
solid phase. The parameter � measures the miscibility
gap �C ¼ CL � CS, where CL is the solute concentration
in the liquid phase, and p measures the mobility of the
interface. From the equilibrium condition �H=�C ¼ 0 it
follows that Uðz� ZÞ is the equilibrium-concentration
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profile at some fixed temperature TS. This profile reveals
the smooth solid-liquid transition region of the original
phase-field model and is regarded as an input quantity of
the model (1). It effectively comprises nonequilibrium
effects of sharp-interface descriptions, which are crucial
for the behavior in the rapid-growth regime, including the
solute-trapping effect [14].

The driving force F includes two quantities, appearing
in the simplest scenario of directional solidification. One of
them is a constant temperature gradient S, entering the
parameterm2 � A�S=TM, where, in physical units, �mea-
sures the width of the interface, visible in the profile Uð�Þ,
TM is the melting temperature of the pure solvent, and A is
a numerical prefactor of order 1. Adopting from Ref. [10]
typical values for S, TM, �, the parameter m2 is of order
10�5. An independent second quantity is the velocity vP,
applied in pulling the growing crystal in opposite direction
to the temperature gradient. The local temperature TP at
the steady-state position ZðtÞ ¼ vPt, finally, determines the
fragment FP � AðTS � TPÞ=TM of the driving force F.

The resulting equations for ZðtÞ and Cðz; tÞ read
1

p
_ZðtÞ ¼ FP �m2½ZðtÞ � vPt�

� �
Z þ1

�1
dzU0ðz� ZðtÞÞ½Cðz; tÞ

�Uðz� ZðtÞÞ�;
ð@t � @2zÞCðz; tÞ ¼ �U00ðz� ZðtÞÞ: (2)

For steady-state boundary conditions Cðz ¼ �1Þ ¼ 0,
they have the stationary solutions ZðtÞ ¼ vPt, and
Cðz; tÞ ¼ CPðz� vPt;vPÞ, resulting in the relations

1

p
vP ¼ FP þGPðvPÞ �GPð0Þ;

GPðvPÞ � ��
Z þ1

�1
d�U0ð�ÞCPð� ;vPÞ;

CPð�;vPÞ ¼
Z �

�1
d� 0U0ð� 0Þ exp½vPð� 0 � �Þ�:

(3)

We are primarily interested in the late-stage behavior of
nonstationary solutions ZðtÞ and, therefore, look for a
solution Cðz; tÞ of the last equation in Eq. (2), obeying
the boundary condition Cðz;�1Þ ¼ 0. This leads to the
expression

Cðz; tÞ¼
Z t

�1
dt0

Z þ1

�1
dz0@z0Gðz� z0; t� t0ÞU0ðz0 �Zðt0ÞÞ;

(4)

involving the Green function
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Z þ1

�1
dk

2�
expð�k2tþ ikzÞ: (5)

After the substitutions � � z� ZðtÞ, � 0 � z0 � Zðt0Þ, and
expansion of Zðt0Þ around ZðtÞ, we obtain
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�
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where vðtÞ � _ZðtÞ ¼ vP þ _hðtÞ.
If one temporarily applies the scaling transformations

h ! m�2h, @t ! m2@t, one observes that, whereas vðtÞ
remains unchanged, a factor m2n�2 is attached to the con-
tributions / @n�1

t vðtÞ. Therefore, with increasing n these
terms are progressively negligible in Eq. (6) due to the
smallness of m2. Neglecting all terms of order n � 2, we
encounter the quasistationary approximation, which is
often used in phenomenological approaches. As we shall
see, however, a proper understanding of oscillatory mo-
tions of the interface requires us to incorporate the term of
order n ¼ 2.
Evaluation of Eqs. (4)–(6) then leads to the expression

Cðz; tÞ ¼ CPð� ;vÞ þ _v
1

2

@2

@v2

1

v
½CPð� ;vÞ þ CPð� ; 0Þ�;

(7)

with CPð�;vPÞ determined by the last line in Eq. (3).
Insertion of this result into the first equation in Eq. (2)
yields the relation

1

p
v ¼ FP �m2ðZ� ZPÞ þGPðvÞ �GPð0Þ

þ _v
1

2

@2

@v2

1

v
½GPðvÞ þGPð0Þ�; (8)

with GPðvÞ following from the second line in Eq. (3). For
v ¼ vP the result (8) consistently reduces to the first
equation in Eq. (3). Subtracting the latter from Eq. (8),
we, finally, find for the displacement hðtÞ � ZðtÞ � ZPðtÞ
the differential equation

Mð _hðtÞÞ €hðtÞ þ Rð _hðtÞÞþm2hðtÞ ¼ 0; (9)

where we have introduced the mass and friction functions

Mð _hÞ � � 1

2

@2

@v2
P

�
GPðvP þ _hÞ þGPð0Þ

vP þ _h

�
;

Rð _hÞ � 1

p
_h�GPðvP þ _hÞ þGPðvPÞ:

(10)

Equation (9) has the typical appearance of a nonlinear
damped oscillator and represents one of the central results
of the present Letter. We mention that, due to the singular

dependence of Mð _hÞ on vP þ _h, the differential equation

(9) is only valid below the crossover line m2 / ðvP þ _hÞ3.
In order to check the stability of the obvious solution

hðtÞ ¼ 0, we linearize Eq. (9) in hðtÞ, which, due to the
definitions (10) and the first line in Eq. (3), yields

Mð0Þ €hþ F0
PðvPÞ _hþm2h ¼ 0: (11)
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In this ordinary oscillator equation the friction coefficient
can change sign at some critical velocity vC, defined by
F0
PðvCÞ ¼ 1=p�G0

PðvCÞ ¼ 0. A similar stability limit has
been found by Cahn in grain-boundary motion [6].

For quantitative discussions of the behavior of hðtÞ we
now adopt the specific model

Uð�Þ ¼ �ð��Þ exp� þ�ð�Þ½2� expð��Þ�; (12)

derived in Ref. [13] from a double-parabola phase-field
model. Then, solving the integrals in Eq. (3), one finds

GPðvÞ ¼ ��
vþ 2

ðvþ 1Þ2 ; (13)

which determines all terms in the oscillator equation (9).
The resulting numerical solutions for hðtÞ above and

below the Cahn threshold vC are shown in Fig. 1 where
the approach to a limit cycle in the unstable regime is
clearly visible. For small distances jvP � vCj=vC � 1
the envelopes of these curves can be calculated analytically

by the Bogoliubov-Mitropolsky method [15]. To leading
order one finds

hðtÞ ¼ aðtÞ cosc ðtÞ; (14)

where c ðtÞ is a rapidly oscillating phase, and aðtÞ is an
amplitude, obeying the differential equation

FIG. 1. Numerical solutions hðtÞ for � ¼ 0:01, p ¼ 100,
m ¼ 0:003, approaching the value h ¼ 0 for vP ¼ 0:522, and
a limit cycle for vP ¼ 0:520.

FIG. 2. Trajectories of hðtÞ, _hðtÞ, CðZðtÞ; tÞ in the unstable
regime for � ¼ 0:02, p ¼ 100, m ¼ 0:003, and vP ¼ 0:5.
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da

dt
¼ ��1a� �3a

3; (15)

with �1 � r1ðvP � vCÞ, and the parameters r1; �3 fixed by
the values of �; p. The solution of Eq. (15) reads

aðtÞ ¼ a0

��
1þ �3

�1

a20

�
expð2�1tÞ � �3

�1

a20

��1=2
; (16)

which for �1 > 0 and �1 < 0 describes the envelopes in
Fig. 1. The asymptotic value of the limit-cycle amplitude

shows the critical behavior að1Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��1=�3

p
.

The numerically obtained limit-cycle trajectories of the

quantities hðtÞ, _hðtÞ, CðZðtÞ; tÞ deep inside the unstable re-
gime are displayed in Fig. 2. They also inform on the local
temperature at the oscillating interface, since this ismeasured
by the quantity m2hðtÞ. The pronounced oscillations of the
solute concentration at the interface CðZðtÞ; tÞ reflect the
appearance of solute bands. From the curves in Fig. 2, which
in part are remarkably close to the findings by Conti in
Ref. [10], one concludes that the high- and low-concentration
layers are connected by large-acceleration segments, ex-
plaining the sharpness of the interfaces between these layers.

In order to explore the possible formation of dendritic
ripples, one has to consider perturbations of the form

hðx; tÞ ¼ ĥðq; !Þ expðiq � xþ!tÞ in a three-dimensional
version of the model (1). In view of the almost stationary

behavior of _hðtÞ in Fig. 2 at low velocities, we choose, as an
approximation, _ZðtÞ ¼ vP as a reference velocity.
Following Ref. [13], we then find the dispersion relation

!

p
þ q2 þm2 � vP½GPðvP þ �Þ �GPðvPÞ�

¼ �2 � q2

vP þ 2�
½GPðvP þ �Þ þGPð�Þ�; (17)

with � � �ðvP=2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðvP=2Þ2 þ!þ q2

p
where the term

m2 is the only new element. The wave-number threshold qc

for the Mullins-Sekerka instability [16] is determined by
the relations !1ðqcÞ ¼ !0

1ðqcÞ ¼ 0. By elimination of qc
from these equations one generates the neutral-stability
boundary of the instability in the form of a function
vPð�Þ, with a parametric dependence on m.
In Fig. 3 the projection of the limit cycle, belonging to

Fig. 2, enters the Mullins-Sekerka unstable regime at low
velocities where the interface develops a dendritic micro-
structure, a typical feature of banded structures in metallic
alloys. The other small cycle in Fig. 3 generates layers of
precipitation-free periodic solute concentrations.
The most obvious generalization of our procedure is to

explore the formation of nonplanar layering effects, which
also is a field for experimental investigations. A typical
example of such an effect is the oscillatory growth of a
spherical nucleus, which has been discussed on the basis of
a phase-field model in Ref. [3], and which we are going to
reconsider within our approach.
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