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We introduce a ‘‘water retention’’ model for liquids captured on a random surface with open boundaries

and investigate the model for both continuous and discrete surface heights 0; 1; . . . ; n� 1 on a square

lattice with a square boundary. The model is found to have several intriguing features, including a

nonmonotonic dependence of the retention on the number of levels: for many n, the retention is

counterintuitively greater than that of an (nþ 1)-level system. The behavior is explained using percolation

theory, by mapping it to a 2-level system with variable probability. Results in one dimension are also

found.
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Consider a bounded horizontal random surface with a
landscape of varying height, as shown in Fig. 1. A liquid
such as water is dripped over the surface and is allowed to
drain out all of the boundaries. Internal sites in valleys
capture the water and create ponds, and eventually all the
ponds fill up to their maximum height. We are interested in
finding the total amount of water retained in the system
when the maximum heights are reached. Physically, this
problem is related to coatings on a random surface and the
properties of landscapes and watersheds. Theoretically, it
is related to the topology of random surfaces [1,2] and to
invasion percolation (IP), but with some interesting new
features.

We study this problem on a regular square lattice with
random heights assigned to each site. The systems are
square of size L� L with draining boundaries on all four
sides. Extensive simulations were performed with uni-
formly distributed discrete heights 0; 1; 2; . . . ; n� 1 for
values of n ranging from 2 to 100, and also for a continuum
of heights 0; 1. We also studied a 2-level system with
variable occupation probabilities of the 2 heights. The
simulation method we used is a form of IP in which we
effectively reversed the flow and flooded the system from
the outside with higher water levels and recorded the level
of the water in a pond when it was first flooded. The
retention is the difference between that level and the height
of the terrain below the pond.

Figure 2 shows the average retention RðLÞ
n on n-level

systems, for n ¼ 2; . . . ; 8, as a function of L. Here we
assume that all terrain heights occur with equal probability.
As expected, the retention grows as L2 for large L, and
generally grows with n, as more levels create deeper ponds.
However, we found deviations to this expected behavior.
As seen in Fig. 2, there is a crossover in the curves for

n ¼ 2 and 3: for small L, RðLÞ
2 <RðLÞ

3 , but for L > 51,

RðLÞ
2 >RðLÞ

3 . This is in spite of the fact that 3-level systems

can have ponds of water of depth 2, while 2-level systems
can only have ponds of depth 1. Further study shows
additional crossings between levels n and nþ 1 at seem-
ingly random n’s and at larger values of L (Table I).

FIG. 1 (color online). Examples of water retention on square
systems with an equal distribution of terrain heights. Top
left: Heights 0 through 9. Top right: Heights 0 and 1. Green
(gray with black height numbers) are dry and above water, blue
(gray with white numbers) are filled with water, and yellow
(light shade) are spillover sites of the height of an adjacent pond
(and only shown if neighboring a wet site). Bottom: Perspective
view of a water-filled 10-level system, with dry sites shown as
gray (lighter shading on top).
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In this Letter we explain some of the puzzling features of
this model, though many questions remain. Some related
issues, especially involving multilevel nonuniform sys-
tems, are discussed in [3].

To analyze the multilevel discrete model, we make a

decomposition of RðLÞ
n in terms of the retention in a 2-level

system with varying p, RðLÞ
2 ðpÞ, where p ¼ Probð0Þ is the

probability or fraction of sites with terrain height 0 in the
2-level system:

RðLÞ
n ¼ Xn�1

i¼1

RðLÞ
2

�
i

n

�
: (1)

The i ¼ 1 term represents the amount of water retained up
to just the first level, for which all sites of terrain height 1 or
higher can be considered as level 1. The net fraction of 0-
height sites is 1=n. The i ¼ 2 term represents the total
amount of water at just the second level; here we collapse
the first 2 levels into the new level 0 (fraction 2=n), and the
rest of the sites can be considered as level 1. Likewise, the
remaining terms follow.

It is also possible to show that ð1=iÞRðLÞ
2 ði=nÞ is equal to

the number of sites with retention i. Thus, the total number
of wet sites is

WðLÞ
n ¼ Xn�1

i¼1

1

i
RðLÞ
2

�
i

n

�
: (2)

It is therefore necessary to just know the behavior of the 2-
level system with a varying p in order to predict the
behavior of all n-level systems (including those with non-
uniform level distributions). We have carried out simula-

tion of RðLÞ
2 ðpÞ for p ¼ 0:01; 0:02; . . . ; 0:99 for various L,

and the results are shown in Fig. 3. For small L, the curve is
rounded and peaked close to Pð0Þ ¼ 1=2, but for larger L it
approaches a ramp of slope 1, up to the value of p ¼ pc ¼
0:592 746 (the site percolation threshold), after which it
drops off precipitously and rapidly approaches 0. This
behavior is best understood from the limit L ! 1.

Define r2ðpÞ ¼ limL!1R
ðLÞ
2 ðpÞ=L2. In an infinite system,

all finite clusters of 0 sites retain water and the infinite
cluster alone drains off. Thus, the total retention is

r2ðpÞ ¼ p� P1ðpÞ; (3)

where P1ðpÞ is the fraction of sites belonging to the
infinite cluster. Very close to (and above) pc, P1 � aðp�
pcÞ� þ � � � , where a is a constant and � ¼ 5=36 [4].
Because P1 rises quickly as p increases beyond pc, we
get the quick drop to zero in r2ðpÞ. For finite L, finite
clusters at the boundaries drain as well, yielding the ob-
served finite-size effects.
Exactly at pc, the drainage area is fractal, yet the re-

tained water is still proportional to L2 for large L with
corrections proportional to Ldf , where df ¼ 91=48 is the

fractal dimension. We verified that at pc the size
distribution of the draining clusters (boundary clusters in

percolation) satisfies n0s � s��0 with �0 ¼ 1=df � 1 ¼
139=91 � 1:527 as predicted in [5]. Our measurement of

FIG. 2 (color online). Retention RðLÞ
n versus L for n ¼

2; 3; . . . ; 8 with a uniform distribution of levels, showing the
crossing of the curves for n ¼ 2 and 3 at L � 51. Additional
crossings are found for larger L (see Table I). For small L there is
an ordering of the retention with n, which is violated for larger L.

FIG. 3 (color online). Retention fraction RðLÞ
2 ðpÞ=L2 in a 2-

level system with varying p ¼ Probð0Þ, for L ranging from 50 to
1000, averaged over 10 000 to 1 000 000 samples for each point.

TABLE I. Crossing points where RðL�Þ
n ¼ RðL�Þ

nþ1, extrapolated
to noninteger L�.

n and (nþ 1) L� RðL�Þ
n

2 and 3 51.12 790

4 and 5 198.1 26 000

7 and 8 440.3 246 300

9 and 10 559.1 502 000

12 and 13 1390.6 4 288 500

14 and 15 1016.3 2 607 000
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�0 ¼ 1:5256� 0:003 confirms this prediction to about 20
times the precision given in [5].

As a good approximation for large L, we can ignore the

small contribution to RðLÞ
2 ðpÞ for p > pc and approximate

RðLÞ
2 ðpÞ ¼ pL2 for p < pc. Then, from (1), we find the

following formula for the n-level retention in the large-L
limit:

RðLÞ
n =L2 � Xn�

i¼1

i

n
¼ n�ðn� þ 1Þ

2n
; (4)

where n� is the largest integer such that n�=n is less than

pc. Thus, we have RðLÞ
2 � ð1=2ÞL2, and RðLÞ

3 � ð1=3ÞL2,

which indeed gives RðLÞ
2 > RðLÞ

3 for large L. This result

can be explained simply by the fact that for the 2-level
system roughly half the sites are 0’s and filled with water,
while for the 3-level system, only 1=3 of the sites are 0’s;
very few ponds are filled to a level of 2 because those sites
correspond to clusters above the percolation threshold.

To explain the crossing, we must also explain why the

curves for RðLÞ
n are ordered RðLÞ

2 < RðLÞ
3 <RðLÞ

4 � � � for small

L. This can be understood qualitatively from the behavior

of RðLÞ
2 ðpÞ for small L as in Fig. 3: because those curves are

smooth, Eq. (1) will be a gradual, increasing function of n.
To be more rigorous, we consider the smallest system
possible: a 3� 3 system, which has only one site that
can hold water (the center site), and only four sites that
can block it, as the corner sites are irrelevant. A direct
calculation yields

Rð3Þ
n ¼ ðn2 � 1Þð3n2 � 2Þ=ð60n3Þ; (5)

which is a monotonically increasing function of n. (Details
of the derivation will be given in a future paper.) Because
the ordering is verified for L ¼ 3 but not for large L,
crossing must necessarily occur for some L.

The curves that are ‘‘out of order’’ and cross are those in
which rn ¼ n�ðn� þ 1Þ=ð2nÞ is greater than rnþ1, by (4).
This occurs when the fractional part of pcn is between 0
and 1� pc � 0:407. The crossing curves (n; nþ 1) are at
ð2; 3Þ, ð4; 5Þ, ð7; 8Þ, ð9; 10Þ, ð12; 13Þ, ð14; 15Þ, ð17; 18Þ, etc.
We have verified the first six crossings as shown in Table I.
For n > 30, the simple analysis based upon (4) evidently
breaks down as contributions from R2ðpÞ for p > pc be-
come important, and the crossings are predicted to become
less frequent.

In the limit that the number of levels becomes infinite,
the discrete system goes over to the continuum one. Now,
as in traditional IP [6], the fluid flows over the lowest
barrier site on the perimeter of a pond. For a continuum
bond IP system, the ‘‘raining’’ IP problem has recently
been considered in [7,8], and the pond-size distribution,
away from the boundaries, was investigated.

Here, considering the continuum site system, we find
that water rises to an average height of �h � 0:6039

(averaged over wet sites only, for L ! 1), which is
slightly above pc. The large ponds have a water level
that is slightly below pc, because higher levels produce
large percolation clusters that would run into the boundary.
There are also small ponds with higher levels, correspond-
ing to clusters above the threshold; these allow the average
water level to be above pc. Figure 4 shows the water level
of sites when first flooded as a function of the number of
sites flooded, showing the small contribution of the ponds
of high level.
In fact, taking the continuum limit of (1) we can calcu-

late the total retention r per site in the continuum system
directly by integrating the curve of r2ðpÞ, r ¼

R
1
0 r2ðpÞdp.

The triangular part below pc gives p2
c=2 exactly, and the

tail above pc gives a small correction. The tail’s area
extrapolates to 0.0063 for large L, and predicts r ¼
p2
c=2þ 0:0063 ¼ 0:1820, which we verified directly to

�0:0002 by measuring the retention for systems of up to
L ¼ 12 000 and extrapolating to L ¼ 1. The retention per

site r is equal to hwhi=2 � w �h=2 � �h2=2, where w ¼
WðLÞ=L2. Note that w ¼ R

1
0ðr2ðpÞ=pÞdp follows from (2)

in the continuum limit, and we find w ¼ pc þ 0:0100 ¼
0:6028 in agreement with direct measurement [see (7)];
�h ¼ 2r=w ¼ 0:6039 was also independently measured.
In fact, applying (3) to Eqs. (2) and (1) we see that w ¼

1���1, r ¼ 1=2��0, and more generally, we find the
moments of the retention as

hrqi ¼ lim
L!1

hðRðLÞÞqi
L2

¼ 1

qþ 1
��q�1; (6)

where�q ¼
R
1
0 x

qP1ðxÞdx is the qth moment of P1. Thus,
we have found that the moments of P1 assume a specific
physical interpretation in the context of the retention
problem.

The asymptotic behavior of WðLÞ and RðLÞ in the con-
tinuum system is found to be

WðLÞ � 0:6028L2 � 2:4L1:25;

RðLÞ � 0:1820L2 � 1:27L1:25;
(7)

FIG. 4 (color online). Level when sites are first flooded versus
fraction of sites flooded on a 1000� 1000 continuum system.
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where the second terms reflect the effects of the drainage
sites and ponds of lower water level near the boundary. At
each level in a discrete system, the drainage area is just all
the clusters touching the boundary, which extends into the
system a distance of the correlation length �� jp� pcj��.

Integrating this over p up to pc � cL�1=� and multiplying

by the perimeter 4L gives a depletion zone / L2�1=� ¼
L5=4. The value of the exponent 1.25 was verified numeri-
cally to �0:05. Recently, it has been shown that water-
sheds, bounded by the ‘‘continental divide’’ between
drainage regions, have a similar fractal dimension df �
1:22 [9]. It appears that these two problems, however, are
different, despite the similarity of exponents.

The assignment of a terrain height for each site using a
probability corresponds to a grand canonical type of de-
scription. One can also distribute the levels canonically,
with exactly 1=n of them of each height. We carried out
simulations using this ensemble and found only small
differences. For L ¼ 3, 4, and 5, we also carried out an

exact enumeration of all canonical states. For small L,� ¼
RðLÞ
n ½canonical� � RðLÞ

n ½grand canonical�> 0, and for
larger L, � decreases. For n ¼ 2, � appears to approach
0, while for n ¼ 3; 4; 5, � appears to approach a negative
constant for large L. Because the value of the retention

itself grows as L2, the relative difference �=RðLÞ
n is very

small. We verified that changing to the canonical ensemble

does not affect the crossing behavior of the RðLÞ
n curves.

We studied the distribution ns of ponds of s sites and
verified that the system self-organizes to the percolation
critical point with ns � s�� and � ¼ 187=91. Unlike stan-
dard percolation, we cannot write exact formulas for any
ns—not even for n1. However, we can make an estimate for
n1 as follows: The probability that a site is in a pond of size
1, of water height between x and xþ dx, is given approxi-
mately by

P1ðxÞdx ¼ 4ð1� xÞ3x½1� ð1� xÞ3�dx; (8)

where the factor of 4ð1� xÞ3 is the probability that 3 of the
neighbors are of higher terrain height (4 possibilities), x is
the probability that the site itself is of terrain height less
than or equal to x, and ½1� ð1� xÞ3� is the probability that
the spillway site has at least one neighbor lower than x, so
the spillway can drain at least to the next sites. This gives
n1 �

R
1
x0
P1ðxÞdx ¼ 0:016 24, where x0 ¼ �h ¼ 0:6039 is

the average water height surrounding the cluster. This
compares to a measurement of n1 ¼ 0:015 95. Likewise,
the average water height of the ponds of size 1, �h1 ¼R
1
x0
xP1ðxÞdx=

R
1
x0
P1ðxÞdx ¼ 0:6904, is close to the ex-

trapolated measured value 0.6887.
We also studied the model in one dimension (1D), where

there are no crossings; however, exact results for all quan-
tities can be found. Consider, for example, the semi-infinite
line (sites 1; 2; 3; . . . ) so that water can spill only through

the left edge, and assume a uniform distribution of barriers
in ½0; 1�. As we look at the 1D ponds, starting from the left
edge, the water level keeps rising the farther we venture
into the line. In fact, each pond begins when a record-
height barrier is encountered and ends when the next, yet
higher barrier, is met.
The probability that the barrier at site kþ 1 is taller than

all the k preceding barriers is
R
1
0 x

kdx ¼ 1=ðkþ 1Þ. This is
also the probability that a pond starts (or ends) at site kþ 1.
Because the barriers demarcating the ponds occur with
probability 1=k at site k, it follows that the typical size of
ponds, k sites away from the edge, is k. The ponds grow
linearly with their distance from the edge.
Next consider psðkÞ, the probability that a 1D pond of

size s is k sites away from the edge, in sites kþ 1; kþ
2; . . . ; kþ s. For that pond to have water level x, the first
k� 1 sites must have barriers lower than x (with probabil-
ity xk�1), as do sites kþ 1; kþ 2; . . . ; kþ s (probability
xs). Site k contains a barrier of height x (probability dx),
and site kþ sþ 1 contains a barrier of height y > x
(probability 1� x). Thus the probability for a pond of level
x is xk�1þsð1� xÞdx. Integrating over x, we obtain the
required probability:

psðkÞ ¼
Z 1

0
xk�1þsð1� xÞdx ¼ 1

ðsþ kÞðsþ kþ 1Þ : (9)

Note that
P1

sþ1 psðkÞ ¼ 1=ðkþ 1Þ, consistent with our

previous result, and that the moments of psðkÞ diverge,
which is why we estimated the typical pond size instead.
Similarly, the probability for having k draining sites at

the edge is

pdrainðkÞ ¼ 1

ðk� 1Þ!
Z 1

0
xkdx ¼ k

ðkþ 1Þ! : (10)

These results illuminate the analogous quantities in 2D,
where, however, no exact results could be found.
In this Letter we have only touched upon the questions

that one may ask about the retention model. There are
many more questions that are unsolved, including the exact
results for the size distribution of the clusters, the average
retention as a function of the distance from an edge, the
behavior on other lattices, on systems with different bound-
ary shapes, in higher dimensions, and systems with a tilt.
We believe it is an interesting model that warrants much
further study.
We mention finally that the water retention problem was

previously studied in the context of surfaces created by
magic squares [10]. The application to random surfaces is
an example of the deeper connections of this problem.
The authors acknowledge correspondence with Neal
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