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A certain two-dimensional lattice model with nearest and next-nearest neighbor interactions is known

to have a limit-periodic ground state. We show that during a slow quench from the high temperature,

disordered phase, the ground state emerges through an infinite sequence of phase transitions. We define

appropriate order parameters and show that the transitions are related by renormalizations of the

temperature scale. As the temperature is decreased, sublattices with increasingly large lattice constants

become ordered. A rapid quench results in a glasslike state due to kinetic barriers created by simultaneous

freezing on sublattices with different lattice constants.
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A recent result in tiling theory [1] presents a new oppor-
tunity for studying the development of long-range order in
a system with a nonperiodic ground state. A single hex-
agonal prototile has been shown to force a limit-periodic
pattern (meaning a state made up of the union of an infinite
number of periodic structures with lattice constants of
ever-increasing sizes [2–4]). The existence of a local
Hamiltonian with a limit-periodic ground state composed
of a single unit repeated in different orientations suggests
that it may be possible for solid state materials, colloidal
systems, or perhaps even collections of macroscopic units
to realize structures of this type. A similar type of complex-
ity occurs in quasicrystals and has implications for elec-
tronic, photonic, elastic, and frictional properties [5]. Even
in the absence of any physical examples of limit-periodic
phases, however, the statistical mechanical properties of
the new tiling model are remarkable and may serve as a
conceptually useful interpolation between crystalline and
glassy behavior.

In this Letter, we study the spontaneous formation of the
limit-periodic structure. Working with a substantially more
complex tiling model with square symmetry, Miȩkisz
showed that a series of partially ordered equilibrium states
exist at nonzero temperatures in a system with a limit-
periodic ground state [6]. Here, we explicitly define order
parameters for the transitions, present numerical evidence
for ordering at slow cooling rates through an infinite se-
quence of phase transitions, and present a scaling theory of
the transition hierarchy. We also show that rapid quenching
produces a state with frozen disorder resulting from the
competition between two or more levels of the hierarchy.

Our model Hamiltonian is based on rules for placing
hexagonal tiles of the type shown in Fig. 1(a) on a close-
packed lattice. Each tile may be placed in any of the 12
orientations obtainable by rotations by �=3 and reflection.
For each nearest neighbor pair, we assign energy zero if the
black stripe is continuous across their shared boundary and
�1 otherwise. For each next-nearest neighbor pair, the
energy is zero if the flags in their closest corners point in

the same direction and �2 otherwise. Reference [1] shows
that for positive �1 and �2, the ground state of an infinite
system is a zero-energy structure that contains black tri-
angles with arbitrarily large side lengths. We emphasize
that the system is completely homogeneous, being a lattice
of identical units.
Staggered tetrahedral order.—The key to explaining the

behavior of the lattice model is to focus on the patterns of
(truncated) black triangles of different sizes in Fig. 1(c).
We refer to the smallest triangles as making up level 1, the
next smallest as level 2, etc., and note that the edge of a
triangle at level n is a straight black stripe crossing kn � 1
tiles, where kn � 2n�1. At each level we have a periodic

FIG. 1. The hexagonal prototile and its mirror image. (a) The
two tiles are related by reflection about a vertical line. (b) For
zero energy, adjacent tiles must form continuous black stripes
and flag decorations at opposite ends of a tile edge (as indicated
by the arrows) must point in the same direction. (c) A portion of
an infinite tiling that has zero energy.
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arrangement of triangles centered on the vertices of a
honeycomb lattice.

The level-1 pattern may form in four different ways. One
example is shown in Fig. 2, in which the tiles marked A do
not contribute at all to the triangles. The other three are
translations of this one, each with a different noncontribut-
ing sublattice (B, C, or D). We associate with each tile j a
‘‘staggered tetrahedral spin’’ vector �1;j ¼ ~eX, where X

indicates one of the four vertices of a reference tetrahedron
(see Fig. 2). The spin of a tile is determined both by the
orientation of the diameter joining its two black triangle
corners and by the sublattice that it belongs to, according to
the map shown at right in Fig. 2. For example, a tile with
corners aligned vertically and sitting on the D sublattice is
assigned �1 ¼ ~eC. Note that specifying �1;j does not

completely specify the orientation of tile j. There are
four consistent choices, corresponding to the two possible
locations of the long black stripe and two possible orienta-
tions of the flag bar perpendicular to that stripe. Note also
that for any given tile, �1 can take only three of the four
possible values.

We define the average total spin �1;tot � 1
N

P
j�1;j,

where N is the number of tiles in the system. The system
exhibits tetrahedral symmetry in the following sense: for
each configuration with a given �1;tot, there is another with

identical energy having � 0
1;tot related to �1;tot by an opera-

tion in the 24-element tetrahedral group Td. The mapping
from operations on the lattice to elements of Td is given in
Table I.
Consider now the level-2 triangles. If the level-1 struc-

ture is perfectly ordered, the corners of the level-2 triangles
must come from the noncontributing sublattice at level 1.
That sublattice (e.g., all of the A’s in Fig. 2) is a precise
copy of the original lattice (with distances scaled by a
factor of 2), so we can define a new staggered tetrahedral
spin �2;tot � 1

N=4

P
j�2;j, where the sum runs only over the

sublattice of interest. The construction can be repeated ad
infinitum, with �n;tot being well defined if and only if the

ordering on level n� 1 is sufficiently strong to unambig-
uously specify which sublattice will order at level n.
Frustration and order in quenches.—We define an order

parameter for each level of structure:�n�max½eX ��n;tot�,
where X 2 fA; B; C;Dg and eX is a unit vector in the
direction labeled ‘‘X’’ in Fig. 2. We take the magnitude
� of each spin to be 3=2 so that the maximum �n is unity
for all n. The maximum �1 occurs if and only if the lattice
of small triangles is perfectly ordered, regardless of the
orientations of the tiles on the X sublattice. Figures 3 and 4
show the behavior of �n with n ¼ 1, 2, 3, 4 for a rapid
quench and for a slow quench. The simulations were done

FIG. 2. The sublattices employed in the definition of the order parameter and the mapping from tile orientations to spin vectors. The
tiles of the A sublattice are labeled along with one tile each of the B, C, and D sublattices. The figure shows the pattern of level-1
triangles formed when the noncontributing tiles are those of the A sublattice. For explanation of the cluster shown at left, the dashed
lines, and grey bar, see text.

TABLE I. Symmetry operations for the total staggered tetrahedral spin. The left column
specifies an operation on the 2D tiling pattern, where X, Y 2 fA;B; C;Dg each represent a
tile in the corresponding sublattice of Fig. 2. The right column specifies 3D operations on the
order parameter in terms of the tetrahedral star of vectors eX, where X is the label shown on
Fig. 2.

Lattice operation Td operation on �

Rotation by 2�=3 about center of X ! Rotation by 2�=3 about eX

Reflection through edge shared by X and Y ! Reflection through (eX, eY) plane

Translations taking X sublattice to Y ! Rotations by � about eX þ eY

Rotation by 2�=3 followed by reflection ! Rotary inversion
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on a rhombic domain with periodic boundary conditions.
Because the ground state is nonperiodic, there must
be some mismatches at all times. For domains of size
2n � 2n, the smallest possible number of mismatches is
4. The simulations employed a standard METROPOLIS algo-
rithm in which a random tile is chosen at each step and one
of the 12 orientations of that tile is chosen randomly as a
possible move. T is lowered by �T ¼ 0:01 after every N�
steps, where � controls the quench rate.

For the rapid quench (see Fig. 3), �1 reaches its satura-
tion value but �2 does not. The ordering on level 2 ceases
to increase once the level-3 transition temperature is
reached, at which point interactions associated with level 3
prevent further ordering of level 2. For the slow quench, on
the other hand, Fig. 4 shows a sequence of clear transitions.
The number of transitions that can be observed is limited
by the system size. At level 5 (not shown), the edge length
of a black triangle is 15 tiles, so our 64� 64 system is only
4� 4 at level 5.

Because the symmetry of the order parameter is the
same as that of a 4-state Potts model, we expect the
transition to fall in the same universality class, which has
an order parameter exponent � ¼ 1=12 [7]. Preliminary
numerical investigations are consistent with a very sharp

second order transition, having not revealed any hysteresis
in a cooling and heating cycle. None of the analysis below
depends on the critical behavior or even on the order of the
transition.
Scaling theory.—The system is considered fully ordered

at level n when all of the level-n triangle corners occur in
the pattern of Fig. 1(c). In the ordered pattern, at each level,
flags in the tiles surrounding a noncontributing tile also
form triangular structures of the type shown at left in Fig. 2.
The long black stripes and the flag bars perpendicular to
them, however, need not be in their ground state orienta-
tions. Their role is only to mediate the interactions between
the triangle corners. We will see below that if the triangle
corners at all levels m< n are assumed to be perfectly
ordered and immovable, the level-n dynamics are identical
to the level-1 dynamics at a rescaled temperature (and
possibly a rescaled �2). We discuss first the special case
�1 ¼ �2 � �.
The partition function for the level-n system can be

expressed as follows. A configuration of the system can
be specified by giving, for every edge of each hexagon, the
location of the black stripe meeting that edge and, for every
vertex, the orientation of the flag at that vertex. A configu-
ration is allowed if and only if the specification for every

FIG. 3. Right: The behavior of the order parameters for a rapid quench. Simulations were performed on a 64� 64 rhombic domain
for �1 ¼ �2 ¼ 1 and � ¼ 120. Left: The result of a rapid quench on an 8� 8 lattice showing the high density of defects that persists at
long times. There are no defects, however, in the level-1 structure, consistent with the high value of �1.

FIG. 4. Right: The behavior of the order parameters for a slow quench. Simulations were performed on a 64� 64 rhombic domain
for �1 ¼ �2 ¼ 1 and � ¼ 12� 105. Left: The result of a slow quench on an 8� 8 lattice showing the minimum possible number of
defects.
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hexagon corresponds to some orientation of the tile deco-
ration of Fig. 1(a), independent of whether neighboring
tiles match properly. At level n, the contribution to the
partition function from a given configuration of the triangle
corners is a product of contributions from all of the nearest
and next-nearest neighbor bonds between the corner tiles.
Each of these bonds consists of kn � 1 tiles, with black
stripes joining nearest neighbors of the level-n sublattice
and flag bars joining next-nearest neighbors. Figure 2
shows an example of each type of bond for the n ¼ 2
case. The dashed grey lines show the two possible loca-
tions of the stripe on a triangle edge joining the corners that
would be present on the A sublattice. The grey diagonal
shows the two possible orientations of the flag bar that
forms a triangle edge for next-nearest neighbor interactions
between two A tiles.

The full partition function for the level-n system is

ZnðTÞ ¼
X

configurations

�Y
bonds

�n;b

�
; (1)

where b 2 fodd; eveng represents the state of a given bond
(mismatched or matched) in the given configuration. Each
edge is effectively a 1D Ising system with kn possible
mismatches [see Fig. 5(a)], which gives

�n;odd ¼ 1

2
½ð1þ e��=TÞkn � ð1� e��=TÞkn�;

�n;even ¼ 1

2
½ð1þ e��=TÞkn þ ð1� e��=TÞkn�:

(2)

Now because the configuration sums are identical for
all levels, the behavior of the system at level n at some
temperature Tn will be identical to that for level 1 at
temperature T1 if �n;oddðTnÞ¼	�1;oddðT1Þ and �n;evenðTnÞ ¼
	�1;evenðT1Þ for some normalization constant 	. Eliminat-

ing 	 from these equations yields, after some algebra,

tanh

�
�

2T1

�
¼

�
tanh

�
�

2Tn

��
kn

(3)

or, equivalently, for all n,

tanh

�
�

2Tn

�
¼

�
tanh

�
�

2Tnþ1

��
2
: (4)

From Eq. (3), the transition temperature for large n is

Tc;n ¼ 1

n log2� logflog½cothð �
2Tc;1

Þ�g þO
�
n

22n

�
: (5)

One might worry that Eq. (5) will break down because
�n may not be fully saturated at Tc;nþ1. Nevertheless, as

shown in Fig. 5, we obtain an excellent data collapse for
several levels by plotting �nðTnÞ as a function of T1ðTnÞ.
(Note: The �’s on the high temperature side of the tran-
sition represent finite-size fluctuations and correspond to
projections onto different tetrahedral vectors.) The col-
lapse shows that the residual disorder after the transition

at level n has a very small effect on the transition at level
nþ 1. For n ¼ 1, the data for Fig. 4 show clearly that�1 is
very close to unity (� 0:999) at the critical temperature for
�2. The scaling argument takes this value to be exactly
unity, in which case Eq. (4) leads to�nðTc;nþ1Þ ¼ �1ðTc;2Þ
for all n. If the small deviation from unity causes the
scaling to break down at large n, it appears that the diffi-
culty will only emerge at lattice sizes too large to be probed
computationally.
The analysis is more complicated for the generic case

�2 < �1, but the essential phenomenology appears to be the
same. Let Tc;nð�1; �2Þ be the level-n transition temperature.

Assuming that deviations discussed in the previous para-
graph can still be neglected, Tc;n must be an increasing

function of each of its arguments. Thus we must have
�2=�1 < Tc;nð�1; �2Þ=Tc;nð�1; �1Þ< 1, where the first in-

equality follows from the fact that a simple rescaling of
all energies gives Tc;nð�2; �2Þ ¼ ð�2=�1ÞTc;nð�1; �1Þ.
Discussion.—The ground state of the tiling model is

discussed in detail in Ref. [1]. The complexity of the
structure is best revealed by the pattern of tile parities
[the grey and white in Fig. 1(c)]. We have shown here
that the model also has remarkable properties at finite
temperatures. First, it exhibits a hierarchy of distinct ther-
modynamic phases, with each successive one correspond-
ing to formation of an ordered lattice with a lattice constant
twice as large as the last. Second, each transition is unusual
in that the low temperature phase leaves one quarter of the
tiles as ‘‘rattlers’’ with undetermined orientations. Finally,
the kinetics of ordering become frustrated if the quench
rate is fast enough that the temperature drops below Tc;n

before �n�1 has reached a sufficiently high value. The
latter effect is reminiscent of glass formation, where lower
energy states can be reached through slower quenching but
any nonzero quench rate eventually leads to trapping in a
nonequilibrium configuration [8]. The present model
shows that this can happen in the context of a series of
transitions that each establish true long-range order.
Many questions remain concerning the precise nature of

the staggered tetrahedral phase transition, the possibility of
reaching the ground state via growth from a small seed, the
geometry and energetics of topological defects in this

FIG. 5. (a) Matched and mismatched corner configurations,
shown here for level-3 triangle edges. (b) Scaling collapse of
Fig. 4 data. The deviation of the level-4 points on the right is due
to the finite size of the system.
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system, and the scaling of the time required for ordering at
each level.

To date, we know of no examples of spontaneous emer-
gence of limit-periodic order in a real system. The present
work suggests that such systems may exist and exhibit
novel properties. The hexagonal tiling consists of a single
unit that may be realized as a cluster of atoms, a surface
pattern on a colloidal particle, or even a micromachined
brick. It is also possible that such systems have already
been observed but not recognized because they present as
‘‘poor’’ crystals in diffraction studies. (See Ref. [9] for a
discussion of diffraction from a limit-periodic structure.)
Systems of interest may be two-dimensional monolayers
on a flat substrate, surface reconstructions on crystals, or
bulk phases. See Ref. [1] for a 3D tile that enforces the
present structure through its shape alone by allowing direct
contact between next-nearest neighbors.

Miȩkisz’s study [10] based on an extension of
Robinson’s set of six Wang tiles [11] indicates that a
limit-periodic ground state with square symmetry should
show a similar sequence of transitions. See [12,13] for 2D
and 3D examples of limit-periodic tilings with square
symmetry composed of only two types of tiles, which
may be more amenable to the type of analysis performed
above.
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