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The temperature dependence of the one-body density matrix in 4He crystals presenting vacancies is

computed with path integral Monte Carlo simulations. The main purpose of this study is to estimate the

onset temperature T0 of Bose-Einstein condensation in these systems. We see that T0 depends on the

vacancy concentration Xv of the simulated system, but not following the law T0 � X2=3
v obtained assuming

noninteracting vacancies. For the lowest Xv we study, that is Xv ¼ 1=256, we get T0 ¼ 0:15� 0:05 K,

close to the temperatures at which a finite fraction of nonclassical rotational inertia is experimentally

observed. Below T0, vacancies do not act as classical point defects becoming completely delocalized

entities.
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The debate about the supersolid state of matter, i.e., a
phase where crystalline order coexists with superfluidity,
has gained great interest among the scientific community
after the first observation of nonclassical rotational inertia
(NCRI) in torsional oscillators containing solid helium
[1,2]. Although several experiments have confirmed the
appearance of a phase transition in solid 4He at tempera-
tures Tc � 60–100 mK [3,4], we are still far from a com-
plete description of this phenomenon because of
controversial experimental results. For instance, the values
of the superfluid density �s=� reported so far can vary
more than 1 order of magnitude according to experimental
conditions such as the way in which the crystal is prepared,
its subsequent annealing, or the 3He concentration [5–7].
These discrepancies suggest that the quality of the solid
sample plays a very important role in these experiments
and make fundamental a study of crystalline defects in
quantum crystals.

First theoretical studies, indeed, suggested that a
possible supersolid behavior can be explained assuming
the presence, in the ground state of quantum crystals, of
delocalized vacancies which may undergo Bose-Einstein
condensation (BEC) at low temperature [8]. Nevertheless,
these early works were based on simplified models, so that
it was not possible to draw specific predictions for solid
4He. More recently, microscopic methods have been ex-
tensively used to provide a reliable description of the
supersolid state but, so far, they have not been able to
reproduce all the experimental findings. Path integral
Monte Carlo (PIMC) simulations have shown that a
commensurate perfect crystal does not exhibit superfluid-
ity [9–11], but a nonzero condensate fraction has been
observed in crystals with a finite vacancy concentration
at zero temperature [12].

The possibility for solid 4He to present vacancies in its
ground state seems to be hindered by the energetic cost of
these defects. According to several quantum Monte Carlo
results, the vacancy formation energy is estimated to be of

the order of 10 K [13–17], in agreement with experimental
measurements [18]. Nevertheless, the high delocalization
of the vacancies in solid 4He at temperatures close to zero
prevents an interpretation of these defects in terms of a
classical theory involving an activation energy and a
configurational entropy for their creation [19–21].
Furthermore, experimental data cannot rule out the possi-
bility of a zero-point vacancy concentration below 0.4%
[22]. It has also to be noticed that formation energy con-
siderations do not exclude the possibility of vacancies
introduced through the experimental conditions, for ex-
ample, during the crystal growth. The spatial correlation
between vacancies has been calculated in order to under-
stand if a gas of defects can be metastable in solid 4He. The
results show an attractive correlation between vacancies at
short distance, but they cannot conclude if they form bound
states and aggregate in large clusters which eventually
would phase separate [14,23–25].
In this work, we calculate by means of the PIMCmethod

the one-body density matrix �1ðr; r0Þ in solid 4He samples
presenting a finite vacancy concentration, focusing espe-
cially on its temperature dependence. In the study of the
BEC properties of quantum systems, �1ðr; r0Þ is a funda-
mental quantity, the condensate fraction n0 being its
asymptotic limit for large jr� r0j values. Our main pur-
pose is to estimate the onset temperature of BEC T0 and to
compare it with the experimental measurements. We start
simulating an hcp crystal with a vacancy concentration
Xv ¼ 1=180, trying also to give a qualitative picture of
the delocalization of the vacancies and the appearance of
BEC. Finally, we study the dependence of T0 on Xv to
guess which would be the vacancy concentration needed to
have BEC appearing in the range of temperatures Tc �
60–100 mK at which NCRI is experimentally observed.
PIMC provides a fundamental approach in the study of

the thermodynamic properties of strongly interacting
quantum systems at finite temperature [26]. In this method,
the partition function Z is rewritten making use of the
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convolution property of the thermal density matrix

GðR0; R;�Þ ¼ hR0je��ĤjRi [where � ¼ ðkBTÞ�1 is the in-

verse of the temperature and Ĥ is the Hamiltonian of the
system], which is known only for small �. This procedure
is equivalent to mapping the quantum many-body system
at finite temperature onto a classical system of closed ring
polymers. Increasing the number of convolution terms
used to rewrite Z, which corresponds to the number of
beads composing each classic polymer, one is able to
reduce the systematic error due to the approximation for
G and therefore to recover ‘‘exactly’’ the thermal equilib-
rium properties of the system. A good approximation for
the propagator G is fundamental in order to reduce the
complexity of the calculation and ergodicity issues. Using
the Chin approximation [27,28], we are able to obtain an
accurate estimation of the relevant physical quantities with
reasonable numeric effort even in the low temperature
regime, where the simulation becomes harder due to the
large zero-point motion of particles. Chin approximation
for the action is accurate to fourth order in the imaginary-
time step, but a real sixth-order behavior can be achieved
by adjusting properly the two parameters entering in it.
Similar accuracies can be achieved using other high-order
proposals for the action [29–31].

An additional problem we have to deal with when
approaching the low temperature limit with PIMC simula-
tions arises from the indistinguishable nature of 4He atoms.
Since we study a bosonic system, the symmetry of Z can be
recovered via the direct sampling of permutations between
the ring polymers. To this purpose, we have used the worm
algorithm [32]. This algorithm allows for a very efficient
sampling of the exchanges between bosons. Furthermore,
it is able to give an estimation of the normalization factor
of �1ðr1; r01Þ, avoiding thus the systematical uncertainties

which can be introduced by a posteriori normalization
factor.

In order to calculate �1ðrÞ ¼ �1ðjr� r0jÞ in a crystal
with vacancy concentration Xv ¼ 1=180, we have carried
out simulations ofN ¼ 179 4He atoms, interacting through
an accurate Aziz pair potential [33], in an almost cubic
simulation box matching the periodicity of an hcp lattice
made up of Ns ¼ 180 sites. We apply periodic boundary
conditions to the simulation box in order to simulate the
infinite dimensions of the bulk system. The volume of the

box � is chosen to keep the particle density equal to � ¼
N=� ¼ 0:0294 �A�3. In Fig. 1, we show the results for
�1ðrÞ at different temperatures and we compare them with
the zero temperature estimations of �1 for the same system
and for a perfect hcp crystal, obtained with the path integral
ground state method in Ref. [34]. We notice that, at tem-
peratures T � 0:75 K, �1ðrÞ computed in an incommensu-
rate crystal, even though it is not compatible with �1 for the
perfect crystal, presents a similar exponential decay at
large r. At lower temperatures, the decay of �1ðrÞ is
smoother and, for temperatures T � T0 ¼ 0:2 K, �1

presents a nonzero asymptote at large r, which indicates
the presence of BEC inside the system. This T0 can be
considered a first estimate of the onset temperature of
supersolidity in the simulated system. An analysis of the
finite size effects would be needed to get a more precise
estimation of the critical temperature of the supersolidity
transition. Nevertheless, the simulation of bigger systems
with exactly the same vacancy concentration requires a
huge computational effort that would make the calcula-
tions impracticable. In contrast, the estimation of the size
effects in bulk liquid 4He is much easier because 100
particles are enough to get a very reliable estimation of
the superfluid transition [35].
In order to give a more qualitative description of the

appearance of BEC in incommensurate 4He solids, we
visualize typical configurations of the system during the
simulation. In Fig. 2, we plot two-dimensional projections
of the positions of the quantum particles (represented by
polymers in PIMC calculations) lying in a basal plane of
the incommensurate hcp crystal at different temperature.
At T ¼ 1 K, 4He atoms tend to be localized around their
equilibrium positions. Also, the vacancies are localized
and can be easily detected inside the lattice. This explains
the fact that, at that temperature, the presence of vacancies
does not noticeably affect the overall behavior of �1 which,
for the incommensurate crystal, is similar to the one of the
perfect crystal. At T ¼ 0:5 K, the effects of the delocali-
zation of the 4He atoms can be seen with the appearance of
some polymers which are spread on two different lattice
points. In the space configurations at this temperature, the
acceptance rate of the exchange between the polymers is
higher than in the configurations at larger temperature, but
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FIG. 1 (color online). The one-body density matrix �1ðrÞ for
an hcp crystal with vacancy concentration Xv ¼ 1=180 at den-
sity � ¼ 0:0294 �A�3 at different temperatures: T ¼ 1 K (red
triangles down), T ¼ 0:75 K (blue triangles up), T ¼ 0:5 K
(green diamonds), T ¼ 0:25 K (yellow squares), and T ¼
0:2 K (purple circles). The dotted and dashed lines represent
�1ðrÞ at zero temperature, respectively, for the commensurate
(Xv ¼ 0) and incommensurate crystal (Xv ¼ 1=180) at the same
density, taken from Ref. [34].
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it is still too low to allow the appearance of long permuta-
tion cycles, which are necessary to see BEC. At T ¼
0:2 K, the large zero-point motion of the 4He atoms makes
the vacancy delocalized and undetectable inside the crys-
tal, which looks like a commensurate system. Since the
number of lattice sites is different from the number of
particles, this means that different polymers may superpose

over the same lattice site: this occurrence strongly enhan-
ces the possibility for the atoms to permutate and allows
the creation of long permutation cycles which close on
periodic boundary conditions. The appearance of configu-
rations presenting a nonzero winding number, as the one
shown in Fig. 3, indicates that the simulated crystals below
T0 ¼ 0:2 K support superfluidity. However, it is not pos-
sible to give a reliable estimation for the superfluid density
�s=� in these systems, since the smallest value for �s=�
computable with the winding number estimator is of the
order of 1%, that is of the same order of the value expected
from the experimental measurements.
In order to study how the vacancy concentration in

quantum solids affects the onset temperature of BEC, we
have computed the one-body density matrix also for fcc
4He crystals with Xv ¼ 1=108, Xv ¼ 1=128, and Xv ¼
1=256. In Table I, we show the onset temperature of
BEC T0 and the condensate fraction n0 at low temperature
obtained with PIMC calculations in the four crystals we
have studied. We notice that, for the lowest Xv, we get
T0 ¼ 0:15� 0:05, which is close to the temperatures at
which supersolidity has been experimentally observed. It is
worth noticing that the result for Xv ¼ 1=128 has been

FIG. 2 (color online). Two-dimensional projection of basal
planes of the incommensurate hcp crystal at different tempera-
tures, represented according to the PIMC isomorphism of the
classical polymers. At T ¼ 1 K (upper panel) the vacancy is
localized and indicated by the red circle. At T ¼ 0:5 K (middle
panel), the vacancy begins to delocalize: the red ellipse indicates
a quantum particle delocalized over two different lattice sites. At
T ¼ 0:2 K (lower panel), the vacancy is completely delocalized
and cannot be easily detected.
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FIG. 3 (color online). Two-dimensional projection of two con-
secutive basal planes of the incommensurate hcp crystal at T ¼
0:15 K. The different colors distinguish the two different planes.
The thick solid line represents a long permutation cycle between
the 4He atoms presenting a nonzero winding number.

TABLE I. The onset temperature of BEC T0 and the conden-
sate fraction n0 at low temperature as a function of the vacancy
concentration Xv ¼ Nv=Ns, Nv and Ns being the number of
vacancies and number of lattice sites, respectively.

Nv Ns Xv T0 (K) n0

1 108 1=108 0:50� 0:10 ð1:81� 0:14Þ � 10�3

2 256 1=128 0:40� 0:075 ð1:09� 0:13Þ � 10�3

1 180 1=180 0:20� 0:05 ð9:0� 0:8Þ � 10�4

1 256 1=256 0:15� 0:05 ð7:2� 0:8Þ � 10�4
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obtained in a simulation with two vacancies in a lattice of
256 site points and the results for both the condensate
fraction and onset temperature follow the same Xv depen-
dence as the single vacancy cases.

In Fig. 4, we plot our results for T0 as a function of Xv.

Our results for T0 do not follow the law T0 � X2=3
v , ob-

tained from a description of solid 4He in terms of a rarefied
Gross-Pitaevskii superfluid gas of vacancies, as proposed
by Anderson in Ref. [21]. This seems to suggest that, at
least in the range of Xv we have been able to study, the
correlations between vacancies have an important effect on
T0 and the system cannot be described within a mean-field
approach. Nonetheless, our qualitative description of 4He
crystals supports the hypothesis [21] according to which it
is not reasonable to regard vacancies in quantum solids as
strictly local entities.

In an attempt to estimate what should be the vacancy
concentration in 4He crystals needed to have BEC appear-
ing at the temperature Tc measured experimentally for the
supersolid transition, we have plotted in Fig. 4 a power
function trying to fit the PIMC results. According to this
empirical law, 4He crystals with a vacancy concentration
Xv � 2–3� 10�3 would have an onset temperature T0 in
agreement with the experimental values Tc. This result for
Xv is in good agreement with the equilibrium vacancy
concentration in solid 4He at zero temperature obtained
variationally with the shadow wave function [24].

In conclusion, we have shown that the onset temperature
T0 of BEC in 4He crystals presenting vacancies, calculated
using the PIMC method, is comparable with the experi-
mental measurements of the supersolid transition tempera-
ture when the concentration of vacancies is small enough
(Xv � 2–3� 10�3). PIMC simulations also show clearly
that when this onset temperature is reached, the vacancies

become completely delocalized objects, as hypothesized in
the past [19,21] and never microscopically observed so far.
This work was partially supported by DGI (Spain) under

Grant No. FIS2008-04403 and Generalitat de Catalunya
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