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We have measured the interaction energy and three-body recombination rate for a two-component Fermi

gas near a narrow Feshbach resonance and found both to be strongly energy dependent. Even for de Broglie

wavelengths greatly exceeding the van der Waals length scale, the behavior of the interaction energy as a

function of temperature cannot be described by atoms interacting via a contact potential. Rather, energy-

dependent corrections beyond the scattering length approximation are required, indicating a resonancewith an

anomalously large effective range. For fields where the molecular state is above threshold, the rate of three-

body recombination is enhanced by a sharp, two-body resonance arising from the closed-channel molecular

state which can be magnetically tuned through the continuum. This narrow resonance can be used to study

strongly correlated Fermi gases that simultaneously have a sizable effective range and a large scattering length.
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Experimental studies of unitary Fermi gases have
exclusively used energetically broad Feshbach resonances
to realize strong interactions [1–16]. For broad resonances,
which exhibit negligible energy dependence over the scale
of the Fermi energy EF, pairwise interactions in a two-
component Fermi gas can be completely parametrized by
the scattering length, a [17–19]. Thus, the equation of state
(EOS) of the Fermi gas in the unitary limit (jaj ! 1) must
be a universal function (dependent only on EF for each
state and the reduced temperature) that describes any
dilute Fermi gas with resonant, zero-range (i.e., energy-
independent) interactions [14,15,20,21].

More generally, however, strongly interacting
Fermi systems can also result from resonant, short-range
interactions that are energy dependent and this energy
dependence can significantly alter the collective behavior
[22–24]. At minimum, the EOS in the limit jaj ! 1 now
depends on an additional parameter, the effective range
reff , which characterizes the first-order term in the low-
energy expansion of the s-wave phase shift � (i.e.,
k cot� ¼ �1=aþ 1

2 reffk
2 þ . . . ). This correction is perti-

nent to neutron matter at densities in neutron stars for
which reffkF � 1 where kF is the Fermi wave number
[25]. In other cases where reff < 0, theoretical estimates
suggest that the unitary Fermi gas becomes even more
strongly interacting as jreff j is increased from zero
[23,25,26], potentially yielding superfluids with the high-
est critical temperature ever achieved. Most dramatically,
the very existence of certain novel phases of matter (e.g.,
the breached-pair superfluid phase [27]) depend on inter-
actions having a particular momentum dependence.

Narrow Feshbach resonances (FR) should allow for the
study of such behavior in an atomic Fermi gas as they have
been predicted to exhibit a strong energy dependence over
the scale of EF [17–19,23,24,28,29]. The effective range
reff in the vicinity of a FR is inversely proportional to its
width and, for narrow resonances, can be large in

comparison to 1=kF or even the van der Waals length
‘vdW [19], potentially allowing for the study of dilute
Fermi gases with large a and large reff .
In this Letter, we experimentally demonstrate that

interactions in a two-component Fermi gas near a narrow
FR cannot simply be parametrized by a field-dependent
scattering length but require an energy-dependent scatter-
ing length or, near the resonance, an anomalously large
effective range. This is done by comparing the measured
interaction energy for a two-component Fermi gas at dif-
ferent temperatures with predictions of mean-field theory.
The interaction energy is measured by radio-frequency (rf)
spectroscopy using a third state [30]. Measurements with
cold gases accurately determine the location and width of
the resonance. For hotter samples, the field dependence of
the interaction energy exhibits an asymmetric line shape
which we interpret to be a signature of energy-dependent
interactions. We further show that inelastic loss from the
gas by three-body recombination is enhanced by a sharp
resonance in the two-body continuum as the molecular
state is tuned above threshold. From the inelastic loss
data we can extract the vibrational relaxation rate constant
due to atom-dimer collisions for the molecular state asso-
ciated with the resonance.
In our experiments, we investigate the narrow resonance

which occurs in s-wave collisions between the two lowest-
energy hyperfine states in 6Li (states j1i and j2i) near a
field of B1 ¼ 543:3 G [31]. Long-lived 6Li2 molecules
had previously been created using this resonance [32]. In
the vicinity of the resonance, the scattering length varies as
aðBÞ ¼ abgð1��=ðB� B1ÞÞ [see Fig. 1(a)]. Here, � ¼
0:1 G is the resonance width and abg ’ 62a0 is the back-

ground scattering length which varies relatively slowly
with field. This narrow FR occurs when the least bound
vibrational level of the X1�þ

g singlet potential crosses

threshold. The energy of the molecular state relative to
threshold varies as Ec ¼ �rðB� B1Þ where �r is the
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difference between the magnetic moment of the colliding
atoms and the bare molecular state given in this case by
�r ¼ 2�B where �B is the Bohr magneton.

Near threshold, the s-wave scattering phase shift � is

� ¼ �bg � tan�1

�
�=2

E� Ec

�
; (1)

the sum of a background phase shift �bg ¼ �kabg and a

resonant phase shift with a Breit-Wigner form [19].
Resonance occurs when the relative kinetic energy E ¼
@
2k2=m is equal to the energy of the molecular state

relative to threshold Ec. Here, @k is the relative momentum
and m is the mass of a 6Li atom. Near threshold, the
energy-dependent resonance width �ðEÞ ¼ 2kabg�r� de-

scribes the finite lifetime of the bound state due to coupling
to the continuum. A contour plot of sin2� in the upper half
of Fig. 1(b) illustrates the sharp resonance that tunes
through the continuum when the molecular state is above
threshold.

The phase shift in Eq. (1) determines the scattering am-
plitude f ¼ 1=ðk cot�� ikÞ where, as in Ref. [26], we find

k cot� ¼ � 1

abg

@
2k2

m ��rðB� B1Þ
@
2k2

m ��rðB� B1Þ þ�r�
; (2)

assuming that kabg � 1. Note that near the resonance [i.e.,

for ðB� B1Þ � �] and near threshold, the scattering phase
shift is given by the effective range expansion, k cot� ¼
� 1

ares
þ 1

2 reffk
2, where ares ¼ abgð �

B1�BÞ and reff ¼ � 2@2

m �
1

abg�r�
. For the narrow FR studied here, the effective range,

being inversely proportional to (abg�), has an anomalously

large value reff ¼ �7� 104a0 with a magnitude much
larger than the average interparticle spacing in the dilute
Fermi gases studied here. Narrow FRs in 6Li-40K mixtures
should also exhibit jreffj � ‘vdW, though the associated
energy dependence has not been verified [33,34].
To study the narrow FR in 6Li we have (1) monitored the

loss of atoms as a function of magnetic field, and (2) per-
formed rf spectroscopy to measure interaction energy
shifts using the transition between state j2i and the third
lowest-energy hyperfine state in 6Li (state j3i). We can
prepare degenerate or thermal mixtures of 6Li atoms with
equal populations in states j1i and j2i by evaporative
cooling in a single or crossed-dipole trap [35]. To control
the density and temperature of atoms in our experiments,
we adjust the degree of evaporative cooling and the final
trap depth following evaporation.
Our initial observation of the narrow FR is shown in

Fig. 1(c) which plots the fraction of atoms remaining in the
optical dipole trap after a 100 ms hold time at each
field. For this data, the average density per spin state
n� 1013 cm�3, the temperature T ’ 7 �K, and the �’s
(d’s) show the fraction remaining when the FR is ap-
proached from a field well below (well above) resonance
at a ramp rate ’ 50 mG=ms. Atom loss from this system
must be due to three-body recombination since two-body
inelastic processes are frozen out at this temperature for a
mixture of 6Li atoms in states j1i and j2i. This feature is
asymmetric with loss preferentially occurring on the high-
field (atomic) side, in contrast to the behavior observed
for Fermi gases near broad resonances [36]. We show that
the asymmetry results from the fact that the molecular state
enhances three-body recombination as it tunes through the
continuum. Higher-temperature gases can have collisions
sufficiently energetic to satisfy the resonance condition
E ¼ �rðB� B1Þ even for magnetic fields far detuned
above resonance [i.e., for kBT ��rðB� B1Þ � �r�].
Thus, the width of the loss feature on the high-field side
of resonance grows as the temperature is increased.
To investigate the dependence of loss on temperature

and field near this FR, we monitor the number of atoms as a
function of time at fixed fields with samples initially pre-
pared above resonance at one of two different tempera-
tures. The density decays according to _n ¼ �L3n

3 due to
three-body recombination where L3 is the three-body re-
combination loss rate constant. For initial Ti ¼ 3:2 �K

FIG. 1 (color online). Narrow Feshbach resonance in 6Li.
(a) The scattering length as a function of magnetic field.
(b) For E < 0, the binding energy of the molecular state relative
to threshold is shown. The molecular state crosses threshold at
B1 ¼ 543:286ð3Þ G. For E > 0, a contour plot of sin2�ðE;BÞ
demonstrates the sharp resonance that the molecular state creates
as it is tuned through the continuum. (c) Fraction of atoms
remaining after a 100 ms hold time at various B fields when
the resonance is approached from below (�) or above (d)
showing an asymmetric loss resonance for a cloud at T ¼ 7 �K.
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(Ti ¼ 10 �K), we have extracted L3 for different B fields
as shown in Figs. 2(a) and 2(b). In both cases, the sample is
initially at T ’ 0:5TF, allowing us to analyze this weakly
degenerate system as a thermal gas [35]. As the B field
approaches resonance, the temperature of the cloud in-
creases as shown in the Fig. 2 insets. A smoothing spline
is fit to the temperature data (solid lines in Fig. 2 insets) and
used to compute n and extract L3 [37].

To understand the behavior of L3 above resonance, we
consider the fact that two atoms with relative kinetic
energy E ’ Ec are resonantly coupled to the vibrationally
excited molecular state responsible for the FR which can
decay in a subsequent atom-dimer collision. A narrow FR
which couples two colliding atoms to a resonant state
which has a finite lifetime (@=�0) due to inelastic decay,
induces loss with a two-body loss rate coefficient [38]

L2 ¼ h

m

1

k

�ðEÞ�0

ðE� 2�BðB� B1Þ2 þ �2
tot=4

: (3)

Here, both inelastic loss and coupling to the continuum
contribute to determining the total linewidth �tot ¼ �0 þ
�ðEÞ. We assume that �0 ¼ @Kadðn1 þ n2Þ where Kad is
the atom-dimer relaxation rate coefficient and n1 (n2) is the
density of atoms in state j1i (j2i). For each state, the
density decays according to _n ¼ �L3n

3 since L2 is itself
proportional to density. A simple expression for L3 is
obtained after performing a thermal average if we assume

that the loss resonance is sharply peaked (i.e., �tot � kBT)
and the field is detuned from resonance such that
�ð�rðB� B1ÞÞ � �0. Under these conditions

L3 ¼ 2h3Kad

ð�mkBTÞ3=2
exp

�
��rðB� B1Þ

kBT

�
; (4)

which has a 1=e width given by kBT=�r.
We have fit both the 3:2 and 10 �K data sets using

Eq. (4) with Kad as the only free parameter (solid lines in
Fig. 2). To evaluate L3 in Eq. (4), we use B1 ¼ 543:286 G
(determined from interaction energy shifts described be-
low), the experimentally measured temperature (insets in
Fig. 2), and the unknown atom-dimer relaxation rate con-
stant Kad. Equation (4) provides an excellent description of
the 3:2 �K data and a good description of the 10 �K data
for atom-dimer relaxation rate coefficients Kad ¼ 3ð1Þ �
10�10 cm3=s andKad ¼ 2ð1Þ � 10�10 cm3=s, respectively.
Here, the uncertainty inKad is due to the uncertainty in trap
frequencies. From the average of both fits and including
our systematic uncertainty in atom number (’ 30%) we
determine Kad ¼ 2:5� 1:9� 10�10 cm3=s. This narrow
resonance can potentially be used as an energy-selective
‘‘knife’’ for forced evaporative cooling [38]. A slight re-
duction in temperature observed in both data sets when
�rðB� B1Þ * 2EF (see Fig. 2 insets) may be a result of
such evaporation.
To measure the dependence of interaction shifts on field

and temperature, we have performed rf spectroscopy be-
tween states j3i and j2i (Fig. 3). The presence of an
incoherent population in state j1i shifts the j3i ! j2i tran-
sition frequency by the difference in interaction energy for
a state-j2i or a state-j3i atom interacting with the
background density of atoms in state j1i [30]. The

2 E  /µF r

2 E  /µF r

T = 10 µKi

T = 3.2 µKi

FIG. 2 (color online). Recombination loss rates for gases ini-
tially prepared at (a) Ti ¼ 3:2 �K and (b) Ti ¼ 10 �K. The
solid lines are single-parameter fits to a model [Eq. (4)] which
assumes that the molecular state resonantly enhances loss as it is
tuned through the continuum.

|11〉

|2〉

|3〉
rf84,365,591 Hz

B = 543.170 G

FIG. 3 (color online). Rabi spectra of the j3i ! j2i transition
for a 95 �s—duration �—pulse. (m) With no atoms in state j1i,
the spectrum accurately determines the B-field. (j) With atoms
in state j1i present, the line shape is broadened and shifted by
interactions. The data are well approximated (dashed) by con-
volving the Rabi transition line shape (dot-dashed) with the line
shape obtained for a thermal gas in a harmonic trap assuming a
frequency shift proportional to the local density. Fits which allow
the Rabi and offset frequencies to vary (solid line) are used to
determine the mean shift ��.
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two-body contribution to mean-field interactions is
determined by the real part of the complex scattering
amplitude f yielding a shift of the rf transition given
by

�� ¼ 2@

m
ð�Re½f13� þ Re½f12�Þn1; (5)

where n1 is the density of atoms in state j1i. Interactions
between atoms in states j1i and j3i can be described by a
contact potential parametrized by a scattering length a13
for which �Re½f13� ¼ a13 at low energy (i.e., ka13 � 1).
However, the narrow j1i � j2i resonance produces a scat-
tering amplitude with a real part that is energy dependent.
In this case, f12 ¼ 1=ðk cot�12 � ikÞ where k cot�12 is
given by Eq. (2). For a thermal gas at temperature T with
density n1, the expected frequency shift is given by Eq. (5)
where Re½f12� is replaced by its thermal average to yield a
T-dependent frequency shift ��ðn1; T; BÞ. Since the den-
sity distribution is inhomogeneous in the trap, the rf-
transition line shape is both shifted and broadened [39]
relative to that observed when atoms in state j1i are absent
(Fig. 3). In order to avoid inelastic loss and heating while
adjusting B, we prepare a 50=50 mixture of atoms in states
j1i and j3i (rather than j1i and j2i), then shift to the field of
interest and finally drive the rf transition from j3i ! j2i
immediately before absorption imaging.

In Fig. 4 we plot � m
2@

��
�n for gases at different absolute

temperatures where �� is the mean value of the observed
line shape (relative to the bare transition frequency for an
isolated atom) and �n is the average density. In terms of the
mean-field prediction, the plotted quantity equals a	 

h�Re½f12ðabg; B; B1;�Þ�iT � a13. Here h. . .iT indicates a

thermal average. The lowest temperature data [Fig. 4(a)]
are fitted to A� a	ðT; a13; abg; B; B1;�Þ where the am-

plitude A accommodates for our uncertainty in the abso-
lute number and trap frequencies. To minimize �2, the
amplitude A, resonance location B1, and width � are
varied while the measured temperature T and the slowly
varying scattering lengths a13ðBÞ ’ �267a0 and abgðBÞ ’
62a0 [40] are fixed. We find the minimum �2 for B1 ¼
543:286ð3Þ G and � ¼ 0:10ð1Þ G where the quoted errors
include the uncertainty in field calibration.

Using B1 ¼ 543:286 G and � ¼ 0:10 G determined
from the lowest temperature data, we plot A� a	 in
Figs. 4(a)–4(d) for each specified temperature where only
A is allowed to vary (solid lines). For comparison, the
prediction for a contact potential with �Re½f12� ¼
abgð1��=ðB� B1ÞÞ is also shown (dashed lines).

Clearly, using a contact interaction to model
j1i � j2i scattering fails to describe the observed interac-
tion shifts as the temperature is increased. The mean-field
predictions which assume an energy-dependent Re½f12�
provide a much better description of the data. In particular,
the increase of the line shape asymmetry with temperature,
the behavior of the interaction energy on the high-field

side of the resonance, and the field at which the strongest
attractive interaction energy is observed are well described
by this model. However, even the energy-dependent model
does not describe the data for fields extremely close to
resonance [e.g., the T ¼ 10 �K data in Fig. 4(c)]. These
discrepancies may be due to correlations in the many-body
wave function not described by mean-field theory. A recent
calculation of the interaction energy near a narrow FR
using a virial expansion (applicable for large T=TF) also
predicts asymmetric behavior across the resonance but
does not quantitatively describe our data [26].

FIG. 4 (color online). Interaction-induced frequency shifts for
clouds at different temperatures. (dashed lines) Shifts predicted
if a contact potential describes j1i � j2i collisions. (solid lines)
Shifts predicted by a mean-field theory that includes the energy
dependence of the scattering phase shift expected near a narrow
resonance.
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In summary, we demonstrated that the inelastic loss of
fermions near a narrow FR is enhanced when the molecular
state is above threshold, contrary to the behavior observed
near broad resonances. We also demonstrated that inter-
atomic interactions near a narrow FR cannot be described
by a contact potential. A mean-field theory which includes
the full energy dependence of the scattering phase shift
expected for a narrow FR provides a good, though not
perfect, description of the observed interaction shifts.
This FR can be used to study strongly correlated Fermi
systems with energy-dependent interactions, potentially
allowing for superfluids with the highest critical tempera-
ture ever achieved [23,26], the observation of a breached-
pair superfluid phase [27], and the determination of the
equation of state for neutron star matter at densities com-
parable to or higher than the neutron drip density [25].
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