
Local Kinetic Effects in Two-Dimensional Plasma Turbulence

S. Servidio,1 F. Valentini,1 F. Califano,2 and P. Veltri1
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Using direct numerical simulations of a hybrid Vlasov-Maxwell model, kinetic processes are inves-

tigated in a two-dimensional turbulent plasma. In the turbulent regime, kinetic effects manifest through a

deformation of the ion distribution function. These patterns of non-Maxwellian features are concentrated

in space nearby regions of strong magnetic activity: the distribution function is modulated by the magnetic

topology, and can elongate along or across the local magnetic field. These results open a new path on the

study of kinetic processes such as heating, particle acceleration, and temperature anisotropy, commonly

observed in astrophysical and laboratory plasmas.
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Turbulence, a complex problem in fluid dynamics, is an
even more challenging subject in a plasma, since cross-
scale couplings and kinetic effects are present [1]. In a
collisional (fluid) description of plasmas, regions in be-
tween coherent structures are expected to be sites of en-
hanced dissipation, where processes such as magnetic
reconnection and plasma heating may be at work [1]. On
the other hand, in collisionless plasmas, as, for example,
the solar wind, kinetic processes may lead to phenomena
such as temperature anisotropy, heating, particle energiza-
tion, entropy cascade, and so on [1–4]. A robust and
quantitative description of these nonlinear features, com-
monly observed in nature, has not been proposed yet.

Kinetic turbulence in plasmas represents an unresolved
problem, and analytical treatments such as linear and
quasilinear simplifications of the Vlasov-Maxwell equa-
tions may be of some help [5]. On the other hand, since
plasmas are commonly subject to turbulence, the above
simplified models may fail to provide a valid description.
In general, a valid support is given by kinetic direct nu-
merical simulations, in which the time evolution of the
particles distribution function (hereafter DF) is described
self-consistently. In turbulent systems such as the solar
wind [6,7], for example, it is of crucial relevance to quan-
tify the role of kinetic effects in the turbulent cascade, since
they may explain the energy dissipation mechanisms. Non-
Maxwellian features of the DF represent one of the most
direct manifestations of these complex kinetic processes.

In simplified kinetic descriptions of the plasma, it is
expected that the DF deforms manifesting enhanced tem-
perature in the direction parallel (or antiparallel) to the
global mean magnetic field. This may be due, for example,
to resonant ion-cyclotron interaction [2,8] or to the gen-
eration of field-aligned beams [9]. It is not trivial that the
above statements still hold in a fully turbulent regime. In
turbulence, moreover, one may ask if kinetic effects are
homogeneous in space, or if they are concentrated in
certain regions of the turbulent field—in the sense that

they manifest as spatial patches. The scenario can also
depend on parameters such as the system size or the level
of turbulence. In the present work we provide some an-
swers to the above questions.
In this Letter we propose an alternative point of view on

the description of plasma turbulence, showing that the ion
DF is modulated by the local mean magnetic field, in a
complex way. We solve numerically the hybrid Vlasov-
Maxwell system, using a Eulerian algorithm [10], in a
2D-3V geometry (two dimensions in physical space and
three in velocity space), to investigate the link between
spatial magnetic structures, such as magnetic vortices, and
the formation of non-Maxwellian features. The latter will
be quantified computing moments of the DF, at each
position of the turbulent field. A statistical description of
the link between the magnetic skeleton of turbulence and
the velocity subspace of the DF will be presented.
The dimensionless hybrid Vlasov-Maxwell equations

(kinetic ions and fluid electrons) are given by [10]

@tfþr � ðvfÞþrv � ½ðEþv�BÞf�¼0; @tB¼�r�E;

E¼�u�Bþj�B=n�rPe=nþ�j; (1)

where fðx;vÞ � fðx; y; vx; vy; vzÞ is the ion distribution

function, E the electric field, B ¼ bþ B0 the total mag-
netic field (B0 ¼ B0ẑ is the mean field), and j ¼ r� b
the total current density. The ion density n and the ion bulk
velocity u are obtained as the velocity moments of f, while
an isothermal equation of state for the electron pressure Pe

has been assigned. In Eq. (1) times are scaled by the
cyclotron time ��1

ci , velocities by the Alfvén speed VA,
lengths by the ion skin depth di ¼ VA=�ci, and masses
by the ion massmi. In order to suppress spurious numerical
effects due to the presence of strong current sheets, a
resistive term in the Ohm’s law has been added as a
standard (numerical) Laplacian dissipation. The resistivity
� is given small values to achieve both high Reynolds
numbers and to ensure adequate spatial resolution
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(�� 10�2 for the runs reported here). The latter choice is
not intended to mimic any specific plasma kinetic process,
but rather to damp out numerical instabilities that may
strongly damage the genuine properties of small-scale
turbulence [11]. Electron inertia effects have not been
included in Eq. (1) [12].

The initial condition consists of a Maxwellian plasma
perturbed by a 2D spectrum of Fourier modes, imposed for
both the velocity and the magnetic field. To avoid an
artificial compressive activity, neither density perturba-
tions nor parallel variance (bz, vz) are imposed at t ¼ 0.
Energy has been injected, with random phases, in the range
2 � m � 6, wherem ¼ ðL0=2�Þk, and L0 ¼ 2��di being
the system size (� is a positive real number). Periodic
boundary conditions have been employed. The ion plasma
beta is � ¼ 2v2

ti=V
2
A ¼ 2 (vti is the ion thermal speed),

while the electron to ion temperature ratio is fixed at
Te=Ti ¼ 1. The limits of the velocity domain in each
direction are fixed at vmax ¼ �5vti. For all runs, 5122

mesh points in physical space and 513 in velocity space
are used. To investigate the influence of both turbulence
and system size, we performed different runs varying
�b=B0 (�b ¼ hb2x þ b2yi and h	i represents spatial aver-

ages) and L0=di. Simulations are reported in Table I.
In analogy with fluid models, in decaying turbulence

there is an instant of time, let us say �?, at which the
turbulent activity is maximum [13]. This time can be
estimated measuring the average out-of-plane squared cur-
rent density hj2zi. At �?, summarized for each run in Table I,
we perform our analysis (a study of the time evolution will
be presented in future works.) As follows, we give a brief
overview on turbulence, analyzing Run II (all the simula-
tions give qualitatively similar results). As represented in
Fig. 1(a), turbulence manifests through the appearance of
coherent structures, exhibiting a sea of vortices (islands)
and current sheets. This can be seen in contour maps of jz
and az, where az is the magnetic potential of the inplane
magnetic field b? ¼ raz � ẑ. In between islands jz be-
comes very intense, being a signature of the intermittent
nature of the magnetic field [6]. In these regions of high
magnetic stress, reconnection locally occurs at the X points
of az [crosses in Fig. 1(a)] [14,15]. From a qualitative
analysis, the size of these current sheets is of the order of
few di’s (note that these also manifest a bifurcation, typical
signature of the Hall effect).

To quantify turbulence, we computed the power spectra
for the density n, the ion bulk velocity u, the magnetic b,

and electric E fields. These power spectra reveal several
features commonly observed in space plasmas and that are
shown in Fig. 1(b). As observed in solar wind turbulence
[6], the large scale activity is essentially incompressible,
namely jnkj2 is negligible for low k’s [6]. The Alfvénic
correlation between the magnetic and the velocity field,
typical of magnetohydrodynamic turbulence, is broken at
kdi � 1 [10,16]. At small scales, comparable or smaller
than di, the spectra become steeper, due mainly to the
presence of kinetic effects. As in previous works
[7,10,16], it is worth noting that the electric activity at
higher k’s is more intense than the magnetic one.
The concentration of current in sheetlike structures,

observed in Fig. 1, suggests that also kinetic effects may
nuzzle locally as well. To get more insight in this intriguing
phenomenon, we will quantify kinetic effects looking
directly at the high-order velocity moments of the DF.

TABLE I. Initial amount of magnetic fluctuations (second
column), system size (third column), and time of the peak of
the turbulent activity (last column).

�b=B0 L0=di �? ð��1
ci Þ

Run I 1=7 2�� 30 150

Run II 1=3 2�� 20 50

Run III 1=3 2�� 10 20

FIG. 1 (color online). (a) Shaded contours (zoom) of jz to-
gether with az (isolines) and its X points (black crosses).
(b) Power spectra of ion density (green dotted), ion bulk velocity
(red dashed), magnetic field (black solid), and electric field (dot-
dashed blue). The Kolmogorov expectation k�5=3 (gray dashed)
is reported as a reference, while the vertical dashed line repre-
sents the ion skin depth wave number.
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In particular, we will concentrate on the temperature and
the kurtosis of f, that, for a Maxwellian, must be 1 and 3,
respectively. The preferred directions of f in the velocity
space, for each x, can be obtained from the stress tensor

AijðxÞ ¼ 1

n

Z
ðvi � hviiÞðvj � hvjiÞfd3v: (2)

This tensor can be studied in a diagonal form computing
its eigenvalues f�1; �2; �3g. The respective normalized ei-
genvectors fê1; ê2; ê3g represent a proper reference frame,
namely, the minimum variance frame (MVF) [17]. Note
that �i are the temperatures (for convention we choose
�1 > �2 > �3) and êi the anisotropy directions. For a
Maxwellian, the tensor in Eq. (2) is diagonal and degen-
erate (�i ¼ 1 and no preferred direction). Using the eigen-
system, the temperature anisotropy is given by �1=�3.
The probability distribution functions (PDF) of �1=�3 in
Fig. 2(a), evaluated sampling over the entire domain of the
simulation at �? (see Table I), show that f is mostly
isotropic, while only few events manifest strong anisotropy
(�1=�3 � 1:7). A comparison between the simulations re-
veals that higher level of turbulence (Runs II and III)
produces patches with higher anisotropy. Moreover, also
the system size influences the anisotropy phenomenon—
smaller systems (Run III) are slightly more anisotropic.
The latter is due to the fact that kinetic effects are more
active when the system size is comparable to di. We would
like to point out that the main ingredient that enhances
anisotropy is turbulence.

The anisotropy, whose shaded contour is represented in
Fig. 2(b), is confined in sheetlike structures (with the size

of a few di), modulated by the local magnetic field: anisot-
ropy is low inside magnetic islands while is high in be-
tween them. These are regions of strong magnetic stress,
shifted away from the X points. To further investigate these
kinetic effects, we inspected the normalized kurtosis
(fourth-order moment):

�iðxÞ ¼
1
n

Rðvi � hviiÞ4fd3v
½1n

Rðvi � hviiÞ2fd3v�2
: (3)

We projected the above vector in the MVF, obtaining
f�1; �2; �3g. The projected kurtosis manifests opposite
behavior with respect to temperatures: the strongest kurto-
sis is along the maximum variance frame ê3, namely �3 (�3

correlated with �1, not shown here.) The distributions
of kurtosis manifest strong variations from Maxwellian
(�i ¼ 3), suggesting that in turbulence the velocity distri-
butions are leptokurtic [Fig. 2(c)]. Similarly to anisotropy,
patterns of �3 are localized in narrow layers in between
magnetic vortices (not shown here). All the runs behave
similarly.
The comparison between Fig. 2(b) with Fig. 1(a) sug-

gests that these distortions are concentrated in sheetlike
regions, located near the peaks of jz. Therefore these
patterns are characterized by intense jr2b?jð¼ jrjzjÞ—
in a fluid model these would correspond to regions where
collisional dissipation takes place. To quantify this corre-
lation, we computed the joint PDF of current gradients and
anisotropy, gðjr2b?j; �1=�3Þ, shown in Fig. 2(d). This
analysis further confirms the correlation, demonstrating
that kinetic effects are nonhomogeneous and concentrated
in high magnetic stress regions.
It is now interesting to examine the structure of the DF in

the presence of turbulence. Since Eulerian Vlasov models
do not suffer from any lack of statistics in velocity space,
here we provide an example of f, at a given x. In Fig. 3(a)
the isosurfaces of f reveal that the DF is strongly affected
by the presence of turbulence, resembling a potatolike
structure elongated in the ê1 direction (ê3 and the direction

FIG. 2 (color online). (a) PDF of the temperature anisotropy
�1=�3 for all runs (arrows represent averages); (b) shaded-
contour (zoom) of the anisotropy together with the inplane
magnetic field lines (black); (c) PDF of the kurtosis �3;
(d) joint distribution of current gradients and anisotropy
gðjr2b?j; �1=�3Þ. In (a) and (c) the statistical error bars are
also reported.

FIG. 3 (color online). (a) Isosurfaces of the velocity distribu-
tion function fðx?;vÞ, at a given spatial position x
 ’
ð60; 119Þdi. (b) Two-dimensional cut of f in the minimum
variance frame. Thin (red) and thicker (blue) axis indicate ê1
and ê3, respectively. The magnetic field direction B̂ is repre-
sented with a thick (magenta) tube.
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of the local magnetic field B̂ ¼ B=jBj are reported as
well). In the same figure [panel (b)], a slice in the ê1-ê3
plane is reported, showing that elongation along ê1 is bal-
anced by a squeezing (depression) along ê3. This modula-
tion is due to the conservation of probability in phase
space: the DF reacts as a balloon to the perturbations of
the turbulent electromagnetic fields, producing complex
deformations.

Surprisingly enough, as can be immediately noticed
from Fig. 3(a), the preferred axis ê1 may strongly depart

from the magnetic field direction B̂, suggesting that in a
fully nonlinear regime departures from linear expectation
are unavoidable. Since turbulence is a cross-scale effect, a
statistical approach is required. To establish how the DF
chooses its main axis, we computed, at each spatial posi-
tion x, the cosine angle between ê1 and the unit vectors of
the magnetic field [18],

cos	ðxÞ ¼ ê1ðxÞ � B̂ðxÞ: (4)

Note that if ê1 and B̂ were spatially random and uncorre-
lated, PDF( cos	) would be a constant �0:5. The PDF is
bounded by cos	 ¼ �1. For all the runs, the PDF’s of
Eq. (4) are reported in Fig. 4, showing that they are not
just peaked at cos	 ¼ 1. Another significant population, in
fact, is present at cos	 ¼ 0 (see Fig. 3). This interesting
behavior suggests that the main axis of f is determined by
the magnetic field in a complex way: ê1 can be both along
or across B.

To summarize, hybrid Vlasov-Maxwell simulations re-
veal that, in turbulence, kinetic effects manifest as snake-
like patches of high anisotropy and kurtosis, nearby
patterns of intense jr2b?j, where cyclotron and/or
Landau resonances may be at work. Here, the distribution
function is strongly modulated by the turbulent electro-
magnetic field, and elongates mainly along or across the
local magnetic field. This work supports the new idea that
kinetic effects in plasmas are strongly inhomogeneous,

property related to the intermittent character of the mag-
netic field. Our results shed new light on the theory of
Vlasov-Maxwell plasmas demonstrating that, when the
distribution function is free to explore the entire velocity
subspace, new features appear as complex interactions
between the DF and the turbulent background. This statis-
tical description of ‘‘kinetic intermittency’’ may challenge
scientists to work on nonlinear (realistic) models of plasma
dynamics, since plasma in nature is generally turbulent.
Further work is needed on this path, to include important
effects such as the 3D geometry, and kinetic electrons [19].
Moreover, to investigate any possible contribution of mod-
elike fluctuations to turbulence (such as Alfvén, whistler,
and kinetic-Alfvén waves), it would be important to carry
out a space-time analysis in the presence of a driving [20].
We acknowledge the INAF-CINECA Key-Project 2010,
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FIG. 4 (color online). PDF of the cosine angle given by Eq. (4)
for all runs. The horizontal (green) dot-dashed line represents the
distribution in the case of random variables.
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