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We propose the design of a space-variant Wien filter for electron beams that induces a spin half-turn and
converts the corresponding spin angular momentum variation into orbital angular momentum of the beam
itself by exploiting a geometrical phase arising in the spin manipulation. When applied to a spatially
coherent input spin-polarized electron beam, such a device can generate an electron vortex beam, carrying
orbital angular momentum. When applied to an unpolarized input beam, the proposed device, in
combination with a suitable diffraction element, can act as a very effective spin-polarization filter. The
same approach can also be applied to neutron or atom beams.
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Phase vortices in electronic quantum states have been
widely investigated in condensed matter, for example, in
connection with superconductivity, the Hall effect, etc.
Only very recently, however, free-space electron beams
exhibiting controlled phase vortices have been experimen-
tally generated in transmission electron microscope (TEM)
systems, using either a spiral phase plate obtained from a
stack of graphite thin films [1] or a “pitchfork” hologram
manufactured by ion beam lithography [2,3]. In a cylindri-
cal coordinate system r, ¢, z, with the z axis along the
beam axis, a vortex electron beam is described by a wave
function having the general form ¢ (r, ¢,z 1) =
u(r, z, t) exp(i€ @), where € is a (nonzero) integer and u
vanishes at » = 0. As in the case of atomic orbitals, € is the
eigenvalue of the z-component orbital angular momentum
(OAM) operator f,z = —idy (in units of the reduced
Planck constant ) and therefore an electron beam of this
form carries €ii of OAM per electron [4]. The recent
experiments on electron vortex beams were inspired by
the singular optics field, in which similar phase or holo-
graphic tools have been used in the last 20 years (see, e.g.,
[5] and references therein). In optics, a recently introduced
alternative approach to the generation of vortex beams is
based on the ‘“‘conversion” of the angular momentum
variation occurring in a spin-flip process into the orbital
angular momentum of the light beam, when the latter is
propagating through a suitable spatially variant birefrin-
gent plate [6,7]. In this Letter, we propose that a beam of
electrons traveling in free space undergoes a similar ““spin-
to-orbital angular momentum conversion” (STOC) pro-
cess in the presence of a suitable space-variant magnetic
field. The same approach may work also for neutrons or
any other particle endowed with a spin magnetic moment
(e.g., atoms or ions). Of course, in the case of electrons, as
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for other charged particles, the magnetic field, besides
acting on the spin, will also induce forces that must be
compensated in order to avoid strong beam distortions or
deflections. Such compensation may be obtained by a
suitable electric field, and this leads us to conceiving the
proposed apparatus essentially as a space-variant Wien
filter. Such an apparatus can be exploited for generating
vortex electron beams when a spin-polarized beam is used
as input. Conversely, if a pure vortex beam is used as input,
by means, e.g., of a holographic method, one can use the
STOC process for filtering a single spin-polarized compo-
nent of the input beam, as we will show further below.
Let us consider an electron beam propagating in vacuum
along the z axis and crossing a region of space lying
between z = 0 and z = L in which it is subject to electric
and magnetic fields E = —V® and B =V X A, where ®
and A are the scalar and vector potentials, respectively. In
the nonrelativistic approximation and neglecting all
Coulomb self-interaction effects (small charge density
limit), the electron beam quantum propagation and spin
evolution are generally described by Pauli’s equation

iho, = [%(—ihv —¢A)?+ed—B- ,u]z,z/ (1)

where i is the spinorial two-component wave function of

the electron beam, e = —|e| and m are the electron charge
and mass, 9, is the derivative with respect to the time
variable ¢, and g = —%g,u 0 is the electron magnetic

moment, with up = hle|/2m the Bohr’s magneton, g =~ 2
the electron g factor, and & = (&,, &, &) the Pauli matrix
vector.

As a first step, we consider the simpler case in which the
electric and magnetic fields are taken to be uniform, lying in
the transverse plane xy, and arranged as in standard Wien
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filters [8,9], i.e., perpendicular to each other and balanced so
as to cancel the average Lorentz force, i.e., Ey = Byp./m,
where E and By, are the electric and magnetic field moduli
and p,. is the average beam momentum. The magnetic field
B is also taken to form an arbitrary angle « with the axis x
within the xy plane. For this case, we solved the full Pauli
equation in the paraxial slow-varying-envelope approxima-
tion for an input beam having a Gaussian profile and an
arbitrary uniform input spin state |);, = a;| 1) + a,| 1),
where | 1) and | |) denote a state for which the spin is parallel
or antiparallel to the z axis, respectively. The complete
expression of the resulting spinorial wave function is given
in the Supplemental Material (SM) [10], while here we
summarize the main findings. The beam propagation be-
havior corresponds to the well-known astigmatic lensing in
the plane perpendicular to the magnetic field. More pre-
cisely, the beam undergoes periodic width oscillations, with
a spatial period A, = 7R, where R, = p./(le|B,) is the
cyclotron radius. This lensing phenomenon is also predicted
by a classical ray theory, when properly taking into account
the effect of the input fringe fields [ 10]. The output spin state
is instead given by the following general expression (Eq. 4
in the SM [10])

| )out = ailcos(8/2) 1) + sin(8/2)ie™| 1)]
+ afcos(8/2)| 1) + sin(8/2)ie "I D] (2)

where 6 = 47L/A, and A| = 47R./g =~ 2A,. This spi-
norial evolution corresponds to the classical Larmor pre-
cession of the spin with spatial period A;/2, 8 being the
total precession angle. However, in addition to the spin
precession, Eq. (2) predicts the occurrence of wave function
phase shifts. In particular, for a | ) or | |) input state and a
total spin precession of exactly half a turn, i.e., 0 = 7 or
L = A,/4, the wave function acquires a phase shift given
by *a + /2, where « is the magnetic field orientation
angle mentioned above and the *sign is fixed by the input
spin orientation (+ for | Ty and — for| |)). These phase shifts
can be interpreted as a special case of geometric Berry
phases arising from the spin manipulation [11].

Let us now move on to the case of a spatially variant
magnetic field. We consider multipolar transverse field
geometries with cylindrical symmetry, described by the
following expression for the magnetic field (with the
vector given in Cartesian components): B(r, ¢, z) =
Bo(r)(cosa(e), sina(¢), 0), where the angle « is now
the following function of the azimuthal angle:

a(r,$,2) =q¢ + B, 3)

where ¢ is an integer and S a constant. Clearly, such a field
pattern must have a singularity of topological charge ¢ at
r = 0. In particular, by imposing the vanishing of the field
divergence, we find that the radial factor By(r) ~ r74, i.e.,
the field vanishes on the axis for g < 0, while it diverges
for g > 0. In the latter case, there must be a field source on
the axis. We call a balanced Wien filter whose magnetic

field distribution in the beam transverse plane obeys Eq. (3)
a “q filter.” The electric field will be taken to have an
identical pattern, except for a local 77/2 rotation, so as to
balance the Lorentz force. Some examples of such g-filter
field distributions are shown in Fig. 1. We are particularly
interested in the negative g geometries, which do not
require us to have a field source at r = 0. For example,
the ¢ = —1 case corresponds to the standard quadrupole
geometry of electron optics, while ¢ = —2 corresponds to
the hexapole one. Wien filters with such geometries have
already been developed in the past for the purpose of
correcting chromatic aberrations [12,13]. Moreover, inho-
mogeneous Wien filters, including several multipolar
terms, have also been considered for the purpose of spin
manipulation, with the added advantage of obtaining a
stigmatic lensing behavior [14]. A possible design of the
g = —1 filter with quadrupolar geometry is shown in
Fig. 2. In such nonuniform field geometry, we cannot solve
analytically the full Pauli equation. However, the beam
propagation is already well-described by classical dynam-
ics and can be derived either analytically, using a power
expansion in r [14], or by numerical ray tracing. In the
former case, we find that to first order the ¢ filter for ¢ # 0
is already stigmatic, i.e., it preserves the beam circular
symmetry. Only second-order corrections introduce aber-
ration effects [14]. This behavior is confirmed by our
numerical ray-tracing simulations (see the SM for details
[10]), which show relatively weak higher-order aberrations
(see Fig. 2). It should be noted that these simulations have
been performed for realistic values of the electric and
magnetic fields, as required to obtain a spin precession of
half a turn across a propagation distance of 50 cm at a beam
radius of 100 um. These calculations are expected to
reproduce very well the electron density behavior (and
spin precession) as would be obtained from Pauli’s equa-
tion. However, Pauli’s equation predicts an additional
purely quantum phenomenon, namely, the geometric phase
already discussed above. In a semiclassical approximation,
the geometric phase will still be given by *a + 7/2,
where « is, however, now position-dependent and given
by Eq. (3). More specifically, neglecting the aberrations,

FIG. 1 (color online). Electric (upper panels) and magnetic
(lower panels) field g-filter geometries for different topological
charges: (a) ¢ = —2,(b)g = —1,(c) g = 1,and (d) ¢ = +2;in
all cases, 8 = 7/2.
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FIG. 2 (color online). Electrodes and magnetic pole geometry
of a ¢ filter with ¢ = —1 (quadrupole), seen in (a) cross sectional
and in (b) three-dimensional rendering. The filter length is set to
50 cm. In (a), the calculated vector potential A, (in false colors),
which is also roughly proportional to the electric potential, and
the projection on the xy plane of the simulated electron ray
trajectories for 100 keV energy are also shown (see the SM for
details about the simulations [10]) for a ring-shaped input beam
with radius » = 100 um (ray color grows darker for increasing
7). In (c), a zoomed-in view of the central region is shown. The
magnetic field at » needed to obtain the tuning condition 6 = 7
is 3.5 mT, with a corresponding electric field of 575 kV/m.
These are obtained with an electrode potential difference of
~ 9 kV and a magnetization of 135 A/mm. The fields need to
be set to the design values with a precision of 1 part in 10%.

each possible electron trajectory within a beam is straight
and parallel to the z axis. Therefore, the electrons traveling
in a given trajectory will experience a constant magnetic
field of modulus B, (r) and orientation a(¢). The set of all
electrons traveling at a given radius r will then undergo a
uniform spin precession by angle &(r) and, if 6(r) = 7
(i.e., for a spin half-turn rotation), they will also acquire a
space-variant geometric phase given by *a(¢) + 7/2 =
*q¢ * B+ /2, with the * sign determined by the input
spin orientation. In other words, the outgoing wave func-
tion acquires a phase factor exp(i€¢), with £ = *+¢, cor-
responding to a vortex beam with OAM *g#. In a quantum
mechanical notation, spin-polarized input electrons with
given initial OAM ¢ passing through a ¢ filter undergo the
following transformations:

[ 1,€) — cos(8/2)| 1, €) + ie?Psin(6/2)] |, € + q),
[ L €)= cos(8/2)] 1, €) + ie P sin(8/2)| 1, € — q),

where the ket indices now specify both the spin state
(arrows) and the OAM eigenvalue.

Equations (4) show that, in passing through the ¢ filter, a
fraction f = sin?(8/2) of the electrons in the beam will flip
their spin and acquire an OAM *gh, while the remaining
fraction 1 — f = cos?(8/2) will pass through the filter
with no change. When L = A,/4, then § = 7 and all
electrons are spin-flipped and acquire the corresponding
OAM. In the specific case of ¢ = 1, the spin angular
momentum variation for the electrons undergoing the

spin inversion is exactly balanced by the OAM variation,
so that the total electron angular momentum remains un-
changed in crossing the filter. This is the pure STOC
process mentioned in the Introduction and it occurs for ¢ =
1 because this geometry is rotationally invariant and there-
fore no angular momentum can be exchanged with the field
sources in the filter. In the ¢ # 1 case, the input spin still
controls the sign of the OAM variation but the total beam
angular momentum is not conserved and some angular
momentum is exchanged with the field sources. We note
that this OAM variation can also be explained as the effect
of the spin-related magnetic-dipole force acting on the
electrons within the magnetic field gradients, as more fully
discussed in the SM [10].

The “tuning” condition L = A,/4 or 6 = 7 can be
achieved in principle for a given radius r by adjusting the
strength of the magnetic and electric fields or the device
length L. Since the precession angle 6 is r-dependent,
however, this tuning condition can be applied to the entire
beam only if it is shaped as a ring, i.e., with all electron
density peaked at a given radius r. Vortex beams with
OAM ¢ # 0 typically have a doughnut shape, so they
approximate a ring fairly well. On the other hand, a
Gaussian input beam (with € = 0) cannot be fully trans-
formed, as 6 = 0 at r = 0, where the beam has the maxi-
mum density. In such cases, only a fraction f of the
electrons would be converted.

So far, we have assumed a spin-polarized input beam.
However, high brightness (i.e., spatially coherent) spin-
polarized electron beams, suitable for high-resolution
TEM applications, are not so easily available. State-of-
the-art spin-polarized sources may achieve a brightness
of 107 Acm ?sr™! and a polarization purity of up to
90% [15] (and the source decays with time due to laser-
induced damage). It is interesting then to analyze the effect
of the ¢ filter on an initially unpolarized electron beam,
having arbitrary initial OAM €. Such an input can be
simply viewed as a statistical mixture in which 50% of
the electrons are in the state | 1, €) and 50% in the state
| |, €). After passing through a tuned ¢ filter, the beam
becomes a 50-50 mixture of states ||, €+ ¢) and
| 1, € — q), for which spin and OAM are correlated (if the
g filter is not tuned, the fraction of converted electrons
decreases to f/2 in each spin-orbit state and there will be a
residual 1 — f fraction of electrons in states | 1, €) and
| |, €)). As we discuss now, this spin-OAM correlation
can be exploited for making an effective electron beam
spin-polarization filter. Such a filter requires four basic
elements in sequence (as shown in Fig. 2 of the SM
[10]): (i) an OAM manipulation device, such as a fork
hologram [2,3], to set € # 0; (ii) a ¢ filter with ¢ = ¢,
generating a mixture of electrons in states ||, 2€¢) and
| 1,0); (iii) a free propagation (or imaging) stage that
allows these two states to develop different radial profiles
by diffraction because of their different OAM values; and
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FIG. 3 (color online). Electron beam profiles in the far field of
the ¢ filter for (a) the € = 0 component and (b) the £ =2
component and (c) a possible discriminating iris radius r = w
to be used to separate them in order to make a spin-polarization
filter. (d) shows the intensity profiles of the same components
(¢ = 0, dot-dashed blue line; ¢ = 2, dashed green line) and of
the possible residual € = 1 component for an untuned ¢ filter
(solid red line). w is the Gaussian beam waist radius in the far-
field plane. A realistic value for the iris radius is of the order of
several tens of microns (obtained by setting the aperture some
distance after the focal plane of the second condensor).

(iv) a circular aperture for finally separating the two states.
In particular, in stage (iii), state | |, 2€) will acquire a radial
doughnut distribution, as in Laguerre-Gaussian modes
with OAM 2¢, which vanishes close to the beam axis as
2¢, while state | 1, 0) will become approximately Gaussian,
with maximum intensity at the beam axis, as shown in
Figs. 3(a) and 3(b). Therefore, a suitable iris [Fig. 3(c)] will
select preferentially the electrons in the fully polarized
state | 1,0). An optical OAM sorter exploiting a similar
approach has been demonstrated recently [16]. A specific
calculation for the case of |¢g| = |€| = 1 and an iris radius
equal to the beam waist w in the ““far field” yield a trans-
mission efficiency of our device of 55.5% (not including
the losses arising in the OAM manipulation device) and a
polarization degree (I; — I,)/(I; + I}), where I;; are the
two spin-polarized currents, of ~97.5%. Higher degrees
of polarization can be obtained at the expense of the
efficiency by reducing the iris diameter or by employing
higher ¢ values (or vice versa). It is worth noting that this
apparatus works also with a partially tuned ¢ filter, as in
this case the unmodified electron beam component is left in
the initial OAM state £ = ¢ and therefore is also cut away
by the iris. An untuned ¢ filter will, however, have an
efficiency reduced by the factor f = sin’(8/2). The aber-

rations introduced by the ¢ filter, even if left uncorrected,
might also affect its efficiency but not its main working
principle, as this is based on the vortex effect, which is
protected by topological stability. Finally, the possible spin
depolarization effect of fringe fields can be neglected if the
length-to-gap ratio of the filter is large enough [10,14].

We note that the spin-filter application discussed above
is a new counterexample of the old statement by Bohr that
free electrons cannot be spin-polarized by exploiting mag-
netic fields, due to quantum uncertainty effects [17-19].
The reason why we can overcome Bohr’s arguments is
essentially that we do not use the magnetic forces directly
to obtain the separation but take advantage of quantum
diffraction itself, as also proposed recently in Ref. [20] (see
the SM for a fuller discussion [10]).

In conclusion, we believe that the g-filter device de-
scribed in this Letter can be manufactured relatively sim-
ply for applications in standard electron beam sources such
as those used in TEMs or other kinds of electron micro-
scopes. In combination with current field-effect unpolar-
ized electron sources, such a filter might provide a spin-
polarized source with a brightness ~10° Acm ™ 2sr™ !,
about 2 orders of magnitude higher than the current state
of the art. This result, if it will be proved practical enough,
may open the way to a spin-sensitive atomic-scale TEM,
e.g., one suitable for investigating complex magnetic order
in matter or for spintronic applications.
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