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The thermal friction force acting on an atom moving relative to a thermal photon bath is known to be

proportional to an integral over the imaginary part of the frequency-dependent atomic (dipole) polar-

izability. Using a numerical approach, we find that blackbody friction on atoms either in dilute environ-

ments or in hot ovens is larger than previously thought by orders of magnitude. This enhancement is due to

far off-resonant driving of transitions by low-frequency thermal radiation. At typical temperatures, the

blackbody radiation maximum lies far below the atomic transition wavelengths. Surprisingly, due to the

finite lifetime of atomic levels, which gives rise to Lorentzian line profiles, far off-resonant excitation

leads to the dominant contribution for blackbody friction.
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Introduction.—In Ref. [1], the thermal drag force on an
atom moving through a thermal bath at velocity v has been
calculated on the basis of the fluctuation-dissipation theo-
rem. In a nutshell, the fluctuation-dissipation theorem
states that any thermal fluctuation of a physical quantity
(say, the electric field at finite temperature) is accompanied
by corresponding fluctuations in the conjugate variable
(here, the atomic dipole moment) provided the suscepti-
bility (in the current case, the atomic polarizability) has a
nonvanishing imaginary part. The imaginary part describes
a dissipative process, in which the atom absorbs, then
spontaneously emits, electromagnetic radiation. The dis-
sipative fluctuations give rise to a drag force calculated
using the Green-Kubo formula, as thoroughly explained in
Ref. [1]. Further physical insight can be gained if one
understands the process in terms of the direction-
dependent Doppler effect [2]. The atom absorbs blue-
shifted blackbody photons coming in from the front, while
emitting these photons in all directions, thereby losing
kinetic energy due to net drain on its energy, and, as a
consequence, on its momentum [3].

Here, we show that even more intriguing problems arise
when one tries to evaluate the effect numerically, for
simple atoms. In atomic physics, the width �n for each
individual energy level n needs to be determined sepa-
rately. Atomic transitions can be driven even very far
from resonance, albeit with small transition probabilities,
The blackbody spectrum is distributed over the entire
frequency interval ! 2 ½0;1Þ, which leads to significant
nonresonant contributions to the thermal friction.

The authors of Ref. [1] use correlation functions for the
thermal electromagnetic fluctuations [4,5], in order to cal-
culate the friction force acting on neutral, polarizable
objects moving through uniform and isotropic thermal
radiation. According to Eq. (12) of Ref. [1], the effective
friction (EF) force, which acts in a direction opposite to the
velocity v, is given as a spectral integral,

FEF ¼ � �@2v

3�c5ð4��0Þ
Z 1

0
d!

!5Im�ð!Þ
sinh2ð12�@!Þ ; (1)

where� ¼ 1=ðkBTÞ is the Boltzmann factor and�ð!Þ is the
dynamic polarizability of the atom. We here argue that the
inclusion of the resonance widths due to the finite lifetimes
of atomic levels is crucial in the calculation of the friction
force. SI mksA units are used throughout this work.
Narrow and finite width.—If we assume that all atomic

transitions are infinitely narrow (of width �), then

�ð!Þ ¼ X
n

f0n
2!0n

�
1

!0n �!� i�
þ 1

!0n þ!� i�

�
; (2)

where f0n denotes the oscillator strength of the transition
and!0n is the angular frequency for the transition from the
ground state j0i to the excited state jni. In view of the Dirac
prescription 1=ðx� i�Þ ¼ Pð1=xÞ þ i��ðxÞ, the imagi-
nary part of the polarizability is approximated as a sum
of Dirac � peaks,

Im�ð!Þ ¼ X
n

�f0n
2!0n

�ð!�!0nÞ: (3)

However, if one includes the width �n of the excited states,
then the starting expression (see Chap. 8 of Ref. [6]) for the
dynamic polarizability reads
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(4)

Here, the decay width �nð!Þ may be a function of the
driving frequency!. In a number of places in the literature
[e.g., see the text after Eq. (2) of Ref. [7] ], it is assumed that

�nð!Þ ¼ ��nð!Þ ¼ !

!0n

�n; �n � �nð!0nÞ: (5)
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One can justify the ansatz (5) in two ways (i) and (ii). (i)
One may invoke an analogy with a damped, driven har-
monic oscillator, whose Green function gðt� t0Þ fulfills the
defining differential equation

�
� @2

@t2
þ �

@

@t
þ!2

0

�
�gðt� t0Þ ¼ �ðt� tÞ; (6)

so that the Fourier transform of the Green function reads as
�gð!Þ ¼ 1=ð!2

0 �!2 � i�!Þ, with
Im �gð!Þ ¼ �!

ð!2 �!2
0Þ2 þ �2!2

: (7)

Assuming that �nð!Þ ¼ ��nð!Þ, this is proportional to the
expression in (4) under the obvious identification !0 !
!0n, � ! �n. (ii) The decay width �n enters the propagator
denominators in Eq. (4) by a summation of self-energy
insertions [8]. The imaginary of the self-energy, divided
by @, equals the decay width [9]. The velocity-gauge ex-
pression [8,10,11] for the decay rate, at resonance ! ¼ !n

and off resonance (for general !), reads as

�n ¼ 4�

3�
!0n

jh�0j ~pj�nij2
ðmcÞ2 ; (8a)

��nð!Þ ¼ 4�

3�
!
jh�0j ~pj�nij2

ðmcÞ2 ¼ !

!0n

�n; (8b)

where ~p is the momentum operator, and�0 and�n are the
wave functions of the ground and excited state.

By contrast, the so-called length-gauge expression
[8,10,11] for the decay width off resonance reads as

�n ¼ 4�

3�
!3

0n

jh�0j ~xj�nij2
c2

; (9a)

~�nð!Þ ¼ 4�
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¼

�
!

!0n

�
3
�n: (9b)

For atoms, using the commutator relation ~p ¼ im½H; ~x�=@,
where H is the Hamiltonian and m the electron mass, one
can show the equivalence of Eqs. (8a) and (9a) at reso-
nance. The !3 dependence off resonance in length gauge
can be justified by analogy with Abraham-Lorentz radia-
tive damping, with a damped oscillator Green function
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(10)

Inserting the expression �nð!Þ ¼ ~�nð!Þ into Eq. (4), one
obtains the length-gauge form for the imaginary part of the
polarizability off resonance (!0 ! !0n, � ! �n).

Quite surprisingly, the question of whether one should
use the length or velocity forms for the decay width off
resonance, i.e., in the interval 0<!<!0n, has not been

answered conclusively in the literature. It has often been

stressed (e.g., in Ref. [12]) that the electric field strength ~E
is a physical observable and thus gauge invariant while the

gauge-dependent vector potential ~A is not. Lamb noted in
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FIG. 1. Plot of the integrand x5e�bxLsðxÞ defined in Eq. (11b)
in the interval characteristic of the thermal peak x � 5=b ¼
0:015 83 [(a), parameter s ¼ 1] and near the resonant peak
x � 0:375 [(b), indistinguishable curves for s ¼ 1 and s ¼ 3].
The thermal peak (a) yields the dominant contribution to the
model integral J defined in Eq. (11a).
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FIG. 2. The characteristic slowdown time due to friction for
ground state atomic hydrogen as a function of the blackbody
radiation temperature. The solid line shows the results using
the dynamic polarizability of Eq. (4) in length-gauge form
[Eq. (9b)], the long-dashed line is the velocity-gauge form
(8b), the shaded area is in between, and the short-dashed line
results from Dirac � peaks given in Eq. (3).
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footnote 88 on p. 268 of Ref. [13] that the interpretation
of the quantum mechanical wave function is only pre-

served in the length gauge with the dipole ~r � ~E interaction,

because the kinetic momentum changes from ~p ! ~p� e ~A
in the presence of a vector potential, and therefore the ~p
operator in the quantum mechanical Hamiltonian of the
atom cannot be interpreted any more as a kinetic momen-
tum if the vector potential is nonvanishing (see also
Chap. XXI of Refs. [14–16]). On the other hand, in
Ref. [7], the authors explain in the text after Eq. (2) that
‘‘the velocity [gauge] form follows originally from the
[fully relativistic] QED description’’ and should therefore
be used off resonance, for the obvious reason that the
nonrelativistic limit of the Dirac matrix vector ~�, which
enters the relativistic expression for the self-energy [17] is
the momentum operator ~p=ðmcÞ. While the length-gauge
results seem to be generally preferred in the literature, the
use of the length versus velocity forms remains controver-
sial, and all numerical results below are therefore indicated
for both velocity and length gauge; further considerations
on the choice of the gauge are beyond the scope of the
current article.

Model example.—In order to illustrate the numerical
evaluation of Eq. (1), we consider a dimensionless model

integral which is obtained by replacing frequency, transi-
tion width, and � with their dimensionless equivalents

! ! x ¼ @!=Eh; � ! � ¼ @�=Eh;

!0 ! x0 ¼ @!0=Eh; � ! b ¼ �Eh ¼ Eh=ðkBTÞ;
where Eh is the Hartree energy. The resulting integral

J ¼
Z 1

0
dx x5e�bxLsðxÞ; (11a)

LsðxÞ ¼ Im

�
1=

�
x0 � x� i�

2

�
x

x0

�
s
��

; (11b)

contains the ‘‘Boltzmann factor’’ e�bx which models the
hyperbolic sine in the denominator of the integrand of
Eq. (1), and the imaginary part is taken for a single reso-
nance function that models the Lorentzian line profile
[with s ¼ 1 and s ¼ 3 for the analogues of Eq. (8b) and
Eq. (9b), respectively]. We choose the temperature as
T ¼ 1000 K, corresponding to b ¼ 315:775, and reso-
nance parameters for the lowest (1S� 2P) transition in
the hydrogen atom: x0 ¼ 3

8 , and � ¼ 1:5162� 10�8. The

imaginary part of the Lorentzian ‘‘polarizability term’’
LsðxÞ is highly peaked near the resonance energy x ¼ x0
and for s ¼ 0, and the full width at half maximum
(FHWM) is equal to �. The relative change of the prefactor
x5 expð�bxÞ over the interval x 2 ðx0 � 1

2�; x0 þ 1
2�Þ is

smaller than 10�5. One thus conjectures that the replace-
ment LsðxÞ ! ��ðx� x0Þ should provide for an excellent
numerical approximation to the contribution of the
Lorentzian peak to the integral J. Indeed,

P1 ¼
Z 0:375 001

0:374 999

dx x5

ebx
LsðxÞ ¼

�
8:669� 10�54 ðs ¼ 1Þ;
8:669� 10�54 ðs ¼ 3Þ;

P2 ¼
Z 0:375 001

0:374 999

dx x5

ebx
��ðx� x0Þ ¼ 8:711� 10�54;

(12)

confirming that P1 � P2 for the peak term. However, this
treatment ignores the possibility of far off-resonant driving
of the transition for x � x0. A numerical evaluation of the
infrared thermal spectrum leads to the result

Qs ¼
Z 0:374 999

0

dx x5

ebx
LsðxÞ ¼

�
3:741� 10�22 ðs ¼ 1Þ;
1:550� 10�24 ðs ¼ 3Þ;
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FIG. 3. Same as Fig. 2 for a ground state helium atom.
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FIG. 4. Same as Figs. 2 and 3 for metastable helium (23S1).

TABLE I. Frequencies, oscillator strengths, lifetimes, and
level widths for transitions between the ground 1S state and
n1P levels within the hydrogen atom.

n !0n [a.u.] f0n [a.u.] 1=�n [ns] �n [a.u.]

2 0.375 000 000 0.416 196 717 1.595 1:5162� 10�8

3 0.444 444 444 0.079 101 562 5.268 4:5911� 10�9

4 0.468 750 000 0.028 991 029 12.346 1:9507� 10�9

5 0.480 000 000 0.013 938 344 23.949 1:0078� 10�9
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which is larger than (12) by roughly 30 orders of magni-
tude. The exact numerical result for J fulfills Js � Qs to
six decimals for s ¼ 1 and s ¼ 3; the effect is dominated
by off-resonance absorption (see also Fig. 1).

Simple atoms.—Returning from our model example
(11a) to realistic simple atoms, we provide results for the
numerical integration of Eq. (1) for hydrogen atoms in
Fig. 2 and for helium atoms in their ground and metastable
triplet states in Figs. 3 and 4, respectively. The friction
force is expressed in terms of its corresponding character-
istic slowdown time � ¼ mv=F. For atomic hydrogen and
helium, the dynamic polarizability (4) has been used with
the parameters listed in Tables I, II, and III. The input data
have been partially calculated by us, and the transition
frequencies and oscillator strengths have been verified
against those given in Refs. [18,19]. The total decay rates
used in the calculation include the decays to both 1S and
1D states. The temperature at which the full Lorentz profile
results start to deviate from the Dirac-� peaks is given by

T	 ¼ @!02

kBx
where x is the greater of the two real and positive

(rather than complex) solutions of the equation x7e�x ¼
32
21�

5 �2

!02
(velocity gauge) and x9e�x ¼ 128

15 �
7 �2

!02
(length

gauge, n ¼ 2 is the principal quantum number of the
lowest excited state). For an equation of the form
xne�x ¼ A, this particular solution can be expressed as

x ¼ �nW�1ð�A1=n=nÞ, where W is the generalized
Lambert W function [20]. In velocity gauge, T	 evaluates
to 3293 K for hydrogen, 6927 K for singlet and 346 K for
triplet helium. In length gauge we have T	 ¼ 2954 K for
hydrogen, 6208 K for singlet and 312 K for triplet helium
(confirmed in Figs. 3 and 4).

Conclusions.—In this Letter, we show that far off-
resonant driving of atomic transitions yields the dominant
contribution to the blackbody friction force on moving
atoms, due to the overlap of the infrared tail of the

Lorentzian profile with the infrared thermal peak of the
blackbody radiation. It is thus imperative to take the finite
lifetime of the atomic resonances and their corresponding
width into account. Numerical results for simple atoms are
provided in Figs. 2–4. The feasibility of an experimental
verification of the predictions of this Letter remains to be
studied. Of the atomic systems considered here, the largest
effect is expected for the metastable 3S1 state in helium. In
this case and for a temperature equal to the melting point of
tungsten (3695 K) the characteristic slowdown time is
computed to be 3016 s (� 50 min), which makes the
friction effect difficult to observe in laboratory experi-
ments, but perhaps not impossible. The general importance
of an accurate understanding of blackbody friction for
astrophysical processes has already been stressed in
Ref. [1]. Further remarks on conceivable astrophysical
consequences of the calculations reported here are beyond
the scope of this Letter.
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