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We establish a set of nonequilibrium quantum phase transitions in the Dicke model by considering a

monochromatic nonadiabatic modulation of the atom-field coupling. For weak driving the system exhibits

a set of sidebands which allow the circumvention of the no-go theorem which otherwise forbids the

occurrence of superradiant phase transitions. At strong driving we show that the system exhibits a rich

multistable structure and exhibits both first- and second-order nonequilibrium quantum phase transitions.
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The Dicke model (DM) is a paradigm of collective
behavior in quantum mechanics [1] and describes the
interaction of N two-level atoms with a single-mode bo-
sonic field. The DM undergoes a quantum phase transition
(QPT) at a critical atom-field coupling, the same order of
magnitude as the atomic level splitting [2,3]. Whereas in
cavity QED it is forbidden by a ‘‘no-go theorem’’ [4,5], the
superradiant QPT has recently been realized experimen-
tally in a simulation of the DM with a Bose-Einstein
condensate in an optical cavity [6].

Even under an adiabatic evolution many-body systems
can exhibit highly nontrivial behavior [7–9]. In particular,
spontaneous symmetry breaking at the DM QPT in a
Bose-Einstein condensate was observed experimentally
by adiabatically crossing the critical point [10].
Furthermore, nonadiabatic evolution of quantum systems
has attracted considerable interest, both theoretical and
experimental [11–14].

In this Letter we study a driven version of the DM in
which we assume a time-dependent atom-field coupling. In
comparison with previous works which consider nonadia-
batic modulation of a single two-level system [15–18] or
an N-atom system under adiabatic modulation [7,19], we
address here the fundamental issue of the influence of
nonadiabatic modulation on QPTs.

In the limit of weak driving strength we show that our
driven DM exhibits a set of new nonequilibrium normal-
superradiant QPTs (QPT sidebands) when the driving is
near resonance with the excitation energies of the undriven
system. The QPTs are of second order and similar in kind
to the original Hepp-Lieb transition [2]. We show that these
nonequilibrium QPTs are not forbidden by the no-go theo-
rem, thus bringing the otherwise-forbidden Dicke-type
QPT in the realm of observability in cavity and circuit
QED setups. Our analysis also allows us to go beyond
this perturbative regime and investigate the limit of
strong driving. In this regime we show that, in comparison
with previous proposals for driven QPTs [20–22], the
nature of criticality changes dramatically. We find a rich
nonequilibrium phase diagram replete with a host of
macroscopically distinct metastable phases and a

nonequilibrium first-order QPT with no analogues in the
static case.
Driven Dicke model.—Following Dicke [1], we describe

an ensemble ofN identical, distinguishable two-level atoms
(level splitting !0) by means of collective operators J�,
� 2 fz;þ;�g, which obey the angular momentum com-
mutation relations (with cooperation number j ¼ N=2).
These atoms interact with a bosonic mode of frequency !
via a dipole interaction. With the atom-field coupling
strength time dependent, we obtain the driven DM,

ĤðtÞ ¼ !ayaþ!0Jz þ gðtÞffiffiffiffi
N

p ðay þ aÞðJþ þ J�Þ; (1)

and in the following we shall consider a monochromatic
modulation with a static contribution: gðtÞ ¼ gþ
�g cos�t.
Normal-phase stability.—In the thermodynamic limit,

N ! 1, the undriven (�g ¼ 0) DM exhibits a QPT at a
critical coupling gc ¼ ffiffiffiffiffiffiffiffiffiffi

!!0
p

=2, where the ground state

changes from an unexcited normal phase to a symmetry-
broken superradiant phase in which both the field and
atomic collection acquire macroscopic occupations [2,3].
We begin our analysis by investigating the stability of this
normal phase under driving. To this end, we construct a
normal-phase effective Hamiltonian in the same way as in
Ref. [3] for the undriven case: we make a Holstein-
Primakoff representation of the angular momentum alge-
bra in terms of bosonic operators b; by and take the
thermodynamic limit, assuming b� N0. The result is the

driven normal-phase Hamiltonian ĤNPðtÞ ¼ !0b
ybþ

!ayaþ gðtÞðay þ aÞðby þ bÞ, which describes fluctua-
tions about the vacuum cavity state and unexcited atomic
ensemble. In the Heisenberg picture, the equations of
motion for the normal coordinate operators of this model,
q̂�ðtÞ, read [23]

€̂q�ðtÞ þ ½"2� � 2!�g cos�t�q̂�ðtÞ ¼ 0; (2)

with "� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � 2g!

p
, the excitation energies of the un-

driven normal phase, and where we have set !0 ¼ ! for
simplicity. Equation (2) represents two uncoupled Mathieu
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equations [24]. In classical dynamics, the Mathieu equa-
tion exhibits the phenomenon of parametric resonance and
has stable and unstable solutions whose location is given
by the Arnold tongues [24]. The manifestation of para-
metric resonance in the quantum regime has also been
studied e.g., [25].

In our case, when both normal modes q̂� are stable,
Hamiltonian HNPðtÞ permits bound solutions, localized
around unoccupied field and atomic modes. Either scaled
field occupation, 2hayai=N, or scaled atomic occupation,
2hbybi=N ¼ 2hJzi=N þ 1, may be taken as the order
parameter for this system, and here they are both zero
(N ! 1). When unstable, HNPðtÞ possesses only un-
bounded solutions and ceases to be a valid approximation
to the full Hamiltonian (admitting the possibility that the
order-parameter becomes finite). Figure 1 depicts these
stable zones as a function of the static parameters g and
!—the colored zones correspond to stability, white zones,
instability. Without driving, �g ¼ 0, the stability-
instability transition corresponds to the standard DM
QPT along the line g ¼ !=2 (on resonance). Increasing
the driving strength �g has two effects: it leads to a shift
of this critical line—as a consequence of parametric

stabilization [24]—and more importantly, it opens up
new zones of instability in the normal phase. The precise
locations of these zones can be obtained from the known
behavior of the Arnold tongues [24]. When they first
appear, these zones are located around resonance between
driving frequency and (undriven) excitation energies:
k� ¼ 2"� with integer k � 0. A similar instability
for k ¼ 1 was briefly discussed in the dispersive limit
! � !0 in Ref. [26]. For sufficiently small driving, the
width of the kth unstable zone scales like ð2=�Þ2k�1 �
ð�g!Þk. For large �g the new instability zones dominate
the parameter space [Fig. 1(b)]. Just as the change in
stability of the undriven normal-phase effective
Hamiltonian indicates the occurrence of a QPT, we inter-
pret the change in the stability of HNPðtÞ as ushering the
occurrence of a nonequilibrium QPT.
Nonequilibrium QPT sidebands.—To obtain more infor-

mation about the nonequilibrium QPTs and the unstable
zones of Fig. 1, we employ Floquet theory [27] and make
use of a generalized rotating wave approximation, similar
to that found in Refs. [18,28,29]. Motivated by the fact that
for small static coupling g the kth instability zone arises
close to ! � k�=2, we perform a canonical transforma-

tion of Eq. (1), ĤðtÞ! ĤkðtÞ¼ Ûy
k ðtÞ½ĤðtÞ� i @@t�ÛkðtÞ with

Û kðtÞ ¼ e�i�ðtÞðayþaÞJxe�iðk�=2ÞðJzþayaÞt; (3)

where �ðtÞ ¼ 2ffiffiffi
N

p ð�g� Þ sin�t. The explicit calculation of

ĤkðtÞ is reported in Ref. [30]. Here it suffices to note that
it can be written in the form

Ĥ kðtÞ ¼
X1

n¼�1
ĥðkÞn expðin�tÞ: (4)

In analogy with the standard rotating-wave approximation
(RWA) of quantum optics, we obtain an approximate
Hamiltonian to describe the kth resonance by neglecting

all terms in ĤkðtÞ with oscillatory time dependence:

ĤkðtÞ � hðkÞ0 . We therefore approximate our time-

dependent problem with a series of time-independent mod-
els, one for each k � 0. The eigenenergies of these time-
independent Hamiltonians are actually quasienergies [27].
We first consider the fundamental k ¼ 0 case with ap-

proximate Hamiltonian

hð0Þ0 ¼ �ð0Þayaþ �ð0Þ
0 J 0

�
2�g

�
ffiffiffiffi
N

p ðay þ aÞ
�
Jz

þ gffiffiffiffi
N

p ðay þ aÞðJþ þ J�Þ þ 2!

�
�g

�

�
2 J2x
N

; (5)

where �ðkÞ ¼ !� k�=2 and �ðkÞ
0 ¼ !0 � k�=2 are de-

tunings in the kth rotating frame, and J 0ðxÞ is the zeroth-
order Bessel function, here, as in Ref. [11], with operator

argument. The validity of the approximation Ĥ0ðtÞ � hð0Þ0

requires g;!;!0 	 �;�maxð1;�g=�Þ [30]. In the limit
�g ! 0, this Hamiltonian recovers the original undriven
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FIG. 1 (color online). Stability diagram of the nonequilibrium
normal phase on resonance ! ¼ !0 for (a) weak driving,
�g=� ¼ 0:15, and (b) strong driving,�g=� ¼ 0:4. The colored
zones correspond to stability, white zones, instability. In the
undriven case, the separatrix between stable and unstable zones
is given by gc ¼ !=2 on resonance (dotted red line). For weak
driving instability zones open up around the resonance condi-
tions "� ¼ kð�=2Þ for k ¼ 1; 2; 3 (dotted black lines), which
grow and begin to dominate for large driving.
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Dicke model. Expanding up to second order in �g=�, we
obtain a model similar to the undriven DM [30], that can be
analyzed in the same way [3]. This analysis reveals a
second-order QPT along the critical line g ¼ !=2þ
!ð�g=�Þ2 (! ¼ !0), which gives the first contribution
to the shift of the DM phase boundary observed in Fig. 1.

For the higher resonances, k > 0, exact expressions for hðkÞ0

are difficult to obtain. However, it is possible to write down
explicit expansions up to any finite order in �g=�. To
second order, the k ¼ 1 Hamiltonian reads

hð1Þ0 ¼ �ð1Þayaþ �ð1Þ
0 Jz

þ gffiffiffiffi
N

p ðayJ� þ aJþÞ þ �g

2
ffiffiffiffi
N

p ðayJþ þ aJ�Þ

� 2!0

�
�g

�

�
2
aya

Jz
N

þ!

�
�g

�

�
2 J�Jþ

N
: (6)

The region of validity of this Hamiltonian is ! � !0 and

�ð1Þ; �ð1Þ
0 ; g; ð�g=�Þ2 	 !;!0. The first two lines of this

Hamiltonian represent a model similar to the original
Dicke model in which energy conserving and nonconserv-
ing parts of the interaction have independent coupling
parameters (g and �g=2, respectively) similar to [31]. At
second order in�g=�, new effective interactions arise: the
terms on the third line of Eq. (6) can be interpreted as an
effective dispersive atom-field interaction and a dipole-
dipole interaction between the atoms. Analytically, this
Hamiltonian may again be treated in the same way as the
undriven DM, from which we observe a second-order
superradiant transition occurring at the critical lines

g ¼ ��g=2þ j�ð1Þ þ!ð�g=�Þ2j. A similar analysis
for the k ¼ 2 case yields a further second-order QPT

along the lines at g ¼ �ð2Þ þ !
2 ð�g=�Þ2 and g ¼ ��ð2Þ �

3!
2 ð�g=�Þ2. This analysis can be repeated for the all

values of k.
For small driving, thus, Fig. 1 shows that the original

DM QPT is joined by a set of new nonequilibrium QPT
sidebands, the visible number of which (i.e., have signifi-
cant width) increases with increasing driving strength.
Each of these nonequilibrium QPTs is similar to the origi-
nal transition in many respects; the transitions are of the
second-order, mean-field type, with the same critical ex-
ponents as in undriven DM [3]. An important difference,
however, is that, whereas the original DMQPToccurs for a
static coupling g�!=2, the sideband QPTs occur for a

coupling g� �ðkÞ 	 !;!0 with driving strength also of
the same magnitude. In contrast to the static case, since the

detuning �ðkÞ can be made arbitrarily small, the term

ĤNG ¼ � ðgðtÞÞ2
!0

ðây þ âÞ2 arising from the square of the

vector potential can be neglected even for �> 1.
Therefore, the sideband QPTs are not prohibited by the
no-go theorem [4,5] and should thus be observable in, e.g.,
cavity- and circuit-QED experiments [32].

First-order nonequilibrium QPT.—We now revisit the
full (nonperturbative in �g=�) k ¼ 0 resonance
Hamiltonian, Eq. (5). We can investigate the critical prop-
erties of this model by using the Holstein-Primakoff rep-
resentation again and by introducing macroscopic

displacements
ffiffiffiffiffiffiffiffiffi
N=2

p
X and

ffiffiffiffiffiffiffiffiffi
N=2

p
Y of the field and atomic

modes, respectively. In the thermodynamic limit, N ! 1,
we obtain a quadratic effective Hamiltonian with leading
term 1

2NEGðX; YÞ with

EGðX; YÞ ¼ !

�
�g

�

�
2
Y2ð2� Y2Þ � 4gffiffiffi

2
p XY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� Y2

p

þ!X2 þ!0ðY2 � 1ÞJ 0

�
4�gXffiffiffi
2

p
�

�
: (7)

The global minima of EGðX; YÞ give the ground-state

energy of hð0Þ0 , and either X or Y may be taken as order

parameter. In the undriven case, the energy surface
EGðX; YÞ exhibits a bifurcation from single to double
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FIG. 2 (color online). Phase diagram as a function of static (g)

and driving amplitudes (�g) of effective Hamiltonian hð0Þ0 , which

describes the driven DM near the k ¼ 0 resonance. The labels
indicate the number of local minima of the ground-state energy
landscape EG in the corresponding zone. The normal phase is the
region where there is just a single minimum (X ¼ Y ¼ 0).
The superradiant phase is a region with two global minima
(nonzero order parameter). The boundary between these two
regions marks a second-order QPT (dotted red curve). Outside
these regions, the energy surface has an odd number � 3 of total
minima, sometimes with a single global minima, sometimes
with two. The boundary between these possibilities is a first-
order QPT (solid blue line). The parameters are !=� ¼
!0=� ¼ 0:05.
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minima at the QPT. In the driven case, while retaining this
bifurcation, EGðX; YÞ also develops multiple additional
minima, with the general trend that the number of minima
increases with driving strength (see Fig. 2).

Figure 3 shows a sequence of cuts through the energy
surface for increasing driving strength with static coupling
g > gc. As is clear from this sequence, at a certain value of
�g, the potential switches from having two global minima
to just a single one at the origin. At the boundary between
these behaviors, the potential exhibits three global minima
where normal-phase-like (with X ¼ Y ¼ 0) and superra-
diantlike (with jXj; jYj> 0) solutions coexist. The system
is therefore seen to exhibit a first-order QPT [33] as a
function of driving strength, the location of which is shown
in Fig. 2. Furthermore, we interpret the local minima of

EðX; YÞ as metastable phases of hð0Þ0 . These metastable

states are related to the phenomenon of parametric stabili-
zation [24]. Since these are separated from the global
minima by macroscopic displacements, we expect transi-
tions to the actual ground state to be suppressed, such that
the corresponding values of the order parameters are ob-
servable. This possibility is reinforced when one recalls
that Eq. (7) actually describes the lowest quasienergy,
which does not have the same thermodynamic significance
as the lowest actual energy.

In summary, then, we have discussed a driven Dicke
model through the use of a series of effective Hamiltonians
obtained under a generalized RWA. For weak driving the
system exhibits a set of QPT sidebands for which the no-go
theorem is circumvented. At strong driving the long-time
dynamics of the system in the k ¼ 0 resonance case is

governed by the effective Hamiltonian hð0Þ0 , which exhibits

rich structure with a first-order quantum phase transition
and metastable states. We anticipate that the higher reso-
nances show similar behavior. Our methodology should be
generalizable to investigate similar regimes for other phase
transitions.
A possible experimental realization of our model could

be carried out by means of a quantum well waveguide
structure, which allows one to switch on the light-matter
interaction within less than one cycle of light [14]. Another
possible implementation consist in a Bose-Einstein con-
densate coupled to an optical cavity where the effective
atom-field coupling could be controlled externally by vary-
ing the intensity of the pump laser as a function of time
about a static value.
The authors gratefully acknowledge discussions with

J. H. Reina, F. Brennecke, T. Esslinger, M. Hayn, V.A.
Leyton, C. Nietner, V. Peano, G. Schaller, M. Thorwart,
and M. Vogel, and financial support from the DAAD and
DFG Grants No. BR1528/7-1, No. 1528/8-1, No. SFB 910,
and No. GRK 1558.

[1] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[2] K. Hepp and E.H. Lieb, Phys. Rev. A 8, 2517 (1973).
[3] C. Emary and T. Brandes, Phys. Rev. Lett. 90, 044101

(2003); Phys. Rev. E 67, 066203 (2003).
[4] P. Nataf and C. Ciuti, Nature Commun. 1, 1 (2010).
[5] O. Viehmann, J. von Delft, and F. Marquardt, Phys. Rev.

Lett. 107, 113602 (2011).
[6] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger,

Nature (London) 464, 1301 (2010).
[7] A. Altland, V. Gurarie, T. Kriecherbauer, and A.

Polkovnikov, Phys. Rev. A 79, 042703 (2009).
[8] A. Polkovnikov, K. Sengupta, A. Silva, and M.

Vengalattore, Rev. Mod. Phys. 83, 863 (2011).
[9] W.H. Zurek, U. Dorner, and P. Zoller, Phys. Rev. Lett. 95,

105701 (2005).
[10] K. Baumann, R. Mottl, F. Brennecke, and T. Esslinger,

Phys. Rev. Lett. 107, 140402 (2011).
[11] J. Gong, L. Morales-Molina, and P. Hänggi, Phys. Rev.

Lett. 103, 133002 (2009).
[12] A. Eckardt, C. Weiss, and M. Holthaus, Phys. Rev. Lett.

95, 260404 (2005).
[13] H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O.

Morsch, and E. Arimondo, Phys. Rev. Lett. 99, 220403
(2007).

[14] G. Günter et al., Nature (London) 458, 178 (2009).
[15] S. De Liberato, D. Gerace, I. Carusotto, and C. Ciuti,

Phys. Rev. A 80, 053810 (2009).

FIG. 3 (color online). Sections of the ground-state energy
landscape EGðX; YÞ for a fixed value of the static coupling
(2g=� ¼ 0:195) and increasing driving amplitudes (�g) repre-
sented by dashed straight lines in Fig. 2. This sections corre-
spond to the function EGðX½Y�; YÞ, where X½Y� is a line in the
order-parameter space crossing all the critical points of the
ground-state energy. The four panels show (a) the superradiant
phase with two global minima, (b) the emergence of a local
minimum at the origin, (c) multiple minima, but still two global
minima, and (d) a single global minima at the origin plus many
further local minima. Panels (c) and (d) are separated by the first-
order phase transition. The parameters are!=�¼!0=�¼0:05.

PRL 108, 043003 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

27 JANUARY 2012

043003-4

http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRevA.8.2517
http://dx.doi.org/10.1103/PhysRevLett.90.044101
http://dx.doi.org/10.1103/PhysRevLett.90.044101
http://dx.doi.org/10.1103/PhysRevE.67.066203
http://dx.doi.org/10.1038/ncomms1069
http://dx.doi.org/10.1103/PhysRevLett.107.113602
http://dx.doi.org/10.1103/PhysRevLett.107.113602
http://dx.doi.org/10.1038/nature09009
http://dx.doi.org/10.1103/PhysRevA.79.042703
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1103/PhysRevLett.95.105701
http://dx.doi.org/10.1103/PhysRevLett.95.105701
http://dx.doi.org/10.1103/PhysRevLett.107.140402
http://dx.doi.org/10.1103/PhysRevLett.103.133002
http://dx.doi.org/10.1103/PhysRevLett.103.133002
http://dx.doi.org/10.1103/PhysRevLett.95.260404
http://dx.doi.org/10.1103/PhysRevLett.95.260404
http://dx.doi.org/10.1103/PhysRevLett.99.220403
http://dx.doi.org/10.1103/PhysRevLett.99.220403
http://dx.doi.org/10.1038/nature07838
http://dx.doi.org/10.1103/PhysRevA.80.053810


[16] P. Alsing, D.-S. Guo, and H. J. Carmichael, Phys. Rev. A
45, 5135 (1992).

[17] V. Peano and M. Thorwart, Phys. Rev. B 82, 155129
(2010).

[18] J. Hausinger and M. Grifoni, Phys. Rev. A 83, 030301(R)
(2011).

[19] G. Vacanti, S. Pugnetti, N. Didier, M. Paternostro, G.M.
Palma, R. Fazio, and V. Vedral, arXiv:1107.0178v1.

[20] C. E. Creffield and T. S. Monteiro, Phys. Rev. Lett. 96,
210403 (2006).

[21] N. H. Lindner, G. Refael, and V. Galitski, Nature Phys. 7,
490 (2011).

[22] J. I. Inoue and A. Tanaka, Phys. Rev. Lett. 105, 017401
(2010).

[23] V.M. Bastidas, J. H. Reina, C. Emary, and T. Brandes,
Phys. Rev. A 81, 012316 (2010).

[24] V. I. Arnold, Mathematical Methods of Classical
Mechanics (Springer-Verlag, New York, 1978).

[25] A.M. Perelomov and V. S. Popov, Teor. Mat. Fiz. 1, 360
(1969).
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