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Departamento de Fı́sica Teórica, Módulo 15, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
(Received 6 September 2011; published 26 January 2012)

We present a Pfaffian formula for projection and symmetry restoration for wave functions of the general

Bogoliubov form, including quasiparticle excited states and linear combinations of them. This solves a

long-standing problem in calculating states of good symmetry, arising from the sign ambiguity of the

commonly used determinant formula. A simple example is given of projecting a good particle number and

angular momentum from a Bogoliubov wave function in the Fock space of a single j-shell.
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Introduction.—The Bogoliubov transformation offers a
powerful way to introduce correlations into multifermion
wave functions. The variational theory based on it, the
Hartree-Fock-Bogoliubov (HFB) theory, has been very
useful in nuclear physics. However, the variational wave
functions need not respect symmetries of the Hamiltonian,
hindering its use for spectroscopic purposes. An obvious
fix is to project the wave functions onto eigenstates of the
conserved quantum numbers. However, present methods to
carry out the projection are beset with technical difficul-
ties. The purpose of this Letter is to present a projection
formula that is applicable to general Bogoliubov wave
functions, including those for odd particle numbers. The
results are generalized for the evaluation of overlaps, as
those required in configuration mixing theories based on
HFB wave functions, commonly referred to as generator
coordinate method.

We first remind the reader that an operator PK for
projecting onto a symmetry group representation K is
given by the integral

P Ki ¼ dK
�0

Z
d�RK

ii ð�ÞRð�Þ: (1)

Here R is an operator of the symmetry group, RK
ij is a

diagonal element of a matrix representation of the group,
dK is the dimension of the representation matrix RK, and
�0 ¼

R
d� is the volume integral over the group. The

main conserved quantum numbers that we wish to restore
in nuclear physics are particle number N and angular
momentum J. These are both very familiar but for con-
creteness we note that particle number is associated with
the gauge group Uð1Þ and the group integral is

R
2�
0 d�

where � is the gauge angle. In the case of angular mo-
mentum, the integration is over the Euler angles
sinð�Þd�d�d� and the representation matrices are the
Wigner D functions. The probability of the component
with quantum number K in the state jwi is given by the
integral

hKjwi2 ¼ hwjPKjwi ¼ dK
�0

Z
d�RK

ijhwjRjwi: (2)

In this Letter, we treat only the problem of calculating
the overlaps; for applications one also needs to calculate
matrix elements of physical operators. In the past, the
computation of the overlap hwjRjwi was carried out by
the Onishi formula [1] (see also [2] Eq. E.49).
Unfortunately, the formula has square root sign ambiguity
which makes it useless for projection, except in special
cases. Several suggestions have been made in the past for
overcoming this sign problem [3–6]. In Ref. [6], Robledo
proposed a promising new formula based on the Pfaffian
rather than the determinant. However, his formula requires
the inverse of the Bogoliubov transformation matrixU, and
is thus not applicable to wave functions for which the U
matrix is singular. This is the case for all wave functions
that have zero overlap with the vacuum. In particular, the
formula cannot be used directly for states of odd particle
number.
Here we propose a Pfaffian expression which can be

easily extended to odd-N wave functions, and indeed to
states with more than one quasiparticle excitation. To
establish the notation, we write the effect of the symmetry
operation as

R cyi R�1 ¼ X
j

Rijc
y
j ; RciR�1 ¼ X

j

R�
ijcj; (3)

where cyi and ci are the usual Fock-space creation and
annihilation operator in some convenient basis. Note that
the matrix R depends on the specific details of the basis
states and does not have to belong to an irreducible repre-
sentation of the group. The wave function is characterized
by the U, V matrices of the Bogoliubov transformation.
Use is made of the Bloch-Messiah decomposition (see [2]
for details and notation) that expresses those matrices as
the product of unitary matrices D and C and special
block diagonal matrices �U and �V, namely U ¼ D �UC and
V ¼ D� �VC ([2], Eq. 7.8). The unitary D transformation
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defines the ‘‘canonical’’ basis with creation and annihila-
tion operators ay and a.

We first consider the simpler case in which the wave
function has a nonzero overlap with the vacuum. Then it
can be expressed in the canonical basis as

jwi ¼ Yn
�

ðu� þ v�a
y
�a

y
��Þji: (4)

Here n is the number of pairs in the wave function and the
matrices U, V have dimension (2n� 2n). To specify the
phase of the wave function, we may take all u� positive
definite. The overlap in this case is given by

hwjRjwi ¼ ð�1ÞnQ
n
�ðv�Þ2

pf
VTU VTRTV�

�VyRV UyV�
� �

; (5)

where pfðMÞ is the Pfaffian of the matrixM. We outline an
alternative derivation below. Note that to use Eq. (5) theU,
V matrices in the canonical basis must be truncated to omit
columns for which v� ¼ 0 (see also Ref. [7]). This simply
means omitting the part of the Fock space that is not
occupied.

The generalization of Eq. (5) to deal with arbitrary
overlaps is straightforward but it requires writing the
wave function jwi of Eq. (4) as

jwi ¼ detCQ
n
�¼1 v�

�1�2 . . .�2nji; (6)

where the �� are Bogoliubov quasiparticle annihilation

operators with amplitudes U and V. Here an unnormalized
wave function is obtained by the product of all the

Bogoliubov-transformed annihilation operators acting on
the vacuum, and

Q
n
�¼1 v

�1
� is the normalization factor. The

phase detC is required for consistency of all the definitions.
The overlap is then given by

hwjRjw0i ¼ ð�1Þn detC
� detC0Q

n
� v�v

0
�

pf
VTU VTRTV 0�

�V 0yRV U0yV0�
� �

;

(7)

This formula is useful in dealing with configuration mixing
of symmetry-restored HFB wave functions, as required in
the implementation of the most general version of the
generator coordinate method. The connection between Eq.
(7) and Eq. (7) of [6] is not straightforward and requires
some lengthy calculations, details are given in [8].
Equation (7) may be extended to wave functions that are

orthogonal to the vacuum by considering the more general
canonical form

Y
q

cyq
Yn
�

ðu� þ v�a
y
�a

y
��Þji: (8)

Again, if the canonicalU, V (U0, V0) matrices are truncated
to omit columns for which v� ¼ 0 (v0

� ¼ 0), Eq. (7) is still
applicable. In the case of odd-N ground states, only a
single additional operator is needed,

jqwi ¼ cyq jwi ¼
X
j

qjc
y
j jwi: (9)

We use the notation q for the row vector of the coefficients
qi (q1;i in matrix notation), and 0 for the row vector of

zeros. Then the generalization of Eq. (7) is

hqwjRjq0w0i ¼ ð�1Þn detC
� detC0Q

n
� v�v

0
�

pf

VTU 0T VTRTq0T VTRTV 0�

0 0 q�RTq0T q�RTV 0�

�q0RV �q0Rqy 0 0

�V 0yRV �V 0yRqy 0T U0yV 0�

2
666664

3
777775: (10)

The shape of this matrix is ð2nþ2þ2nÞ�ð2nþ2þ2nÞ.
To derive it and Eq. (7), first note that the expectation value
of a product of single-fermion operators �i is given by the
Pfaffian of all possible contractions [9,10]

h�1�2 . . .�ki ¼ pfðSi;jÞ; (11)

where Si;j is a skew-symmetric matrix with upper triangu-
lar elements Si;j ¼ hj�i�jji (i < j). The overlaps can be
written in this form using Eq. (6). The overlap in Eq. (10) is
derived by evaluating the contractions in the operator
product

h�y
2n�

y
2n�1 . . .�

y
1cq~c

y
q0
~�0
1
~�0
2 . . . ~�

0
2ni; (12)

where ~�0 ¼ R�0R�1, etc. The matrices entering the
Pfaffian of Eq. (10) are easily identified:

ðVTUÞ�� ¼ hj�y
��

y
� ji; (13)

ðVTRTq0TÞ� ¼ hj�y
�~c

y
q0 ji ¼

X
j

q0jhj�y
�~c

y
j ji; (14)

ðVTRTV 0�Þ�� ¼ hj�y
�
~�0
�ji; (15)

q �RTq0T ¼ X
jj0
q�jq0j0 hjcj~cyj0 ji; (16)
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ðq�RTV 0�Þ� ¼ X
j

q�j hjcj ~�0
�ji; (17)

ðU0yV 0�Þ�� ¼ hj ~�0
�
~�0
�ji: (18)

The generalization of Eq. (10) to multiquasiparticle
overlaps, with r annihilation operators ���j

(Bogoliubov

amplitudes �U, �V) to the left of R and s creation operators
��0
�j
to the right, is tedious but straightforward

hwj ���r
� � � ���1

R ��0y
�1
� � � ��0y

�s
jw0i ¼ ð�1Þnð�1Þrðr�1Þ=2 detC

� detC0Q
n
� v

�
�v

0
�

pf

VTU VTpy VTRTq0T VTRTV 0�

�p�V q�py q�RTq0T q�RTV0�

�q0RV �q0Rqy p0q0T p0V0�

�V 0yRV �V0yRqy �V 0yp0T U0yV0�

2
666664

3
777775: (19)

For this expression to make sense, both r and s must have
the same number parity. The objects p and q (p0 and q0) are
matrices of dimension r� 2n (s� 2n) with matrix ele-
ments p�jm ¼ �Vm�j

and q�jm ¼ �Um�j
. If some of the ��

annihilation operators are replaced by creation ones ��y the
appropriate rows of q and q0 have to be redefined accord-
ingly. It is easy to check that Eq. (19) reduces to Eq. (10) in
the limit p ¼ 0. Apart from the fact that Eq. (19) includes
the phase of the matrix element, this expression has the
advantage over more traditional approaches [11] that the
combinatorial explosion in the evaluation of the left hand
side of Eq. (19), namely, the fact that ðrþ sÞ!! contractions
have to be considered if the multiquasiparticle overlap is
computed with the standard Generalized Wick’s theorem,
is completely avoided (see [12] for another approach based
on the finite temperature formalism).

Example.—As a proof of principle, we carry out the
projection for an odd-N wave function having a nontrivial
structure with respect to angular momentum and particle
number. We take the Fock space as the six-dimensional
space of orbitals in a j ¼ 5=2 shell. The creation operators

cym are labeled by azimuthal angular momentum jz ¼ m.
The wave function for the test is

jqwi ¼ cy1=2ðuþ vcy5=2c
y
�5=2Þji; (20)

with ðu; vÞ ¼ ð0:8; 0:6Þ. We project simultaneously on par-
ticle number and angular momentum with the operator

PNP JJz . We use a 4-point uniform mesh for integrating

the gauge angle and a 5-point Gauss-Legendre quadrature
for integrating over the angular variable cosð�Þ. There is no
necessity to integrate over the other Euler angles because
thewave function Eq. (20) is an eigenstate of Jz. The results
are shown inTable I. The projected quantumnumbersN and
J are given in the first two columns. The third column gives
the exact decomposition, and the fourth column the numeri-
cal projection. One sees that there is complete agreement to
the level of numerical precision in the integrations.
Discussion.—Besides the overlap function hwjRjwi we

need the matrix elements of various operators in the
symmetry-restored states. For the most important operators
they can be expressed as a single integral over matrix
elements of the type hwjORjwi where O is an operator
such as the Hamiltonian. It is straightforward to calculate
these operator matrix elements using the Balian-Brezin
formula[11] or the multiquasiparticle overlap of Eq. (19).
Unlike the formulation in Ref. [6], our method here does
not require one to construct quasiparticle states explicitly.
Our procedure is easily extended to multiquasiparticle
matrix elements with a final result that avoids the combi-
natorial explosion that plagues other methods used to
evaluate those overlaps. For a k-quasiparticle excitation,
the Pfaffian matrix is augmented by 2k rows and columns.
A program that demonstrates the method for the example
in Table I is provided in the Supplemental Material [8].
After this work was posted on arXiv [13], we learned that a
similar fully general formula for the overlap was obtained
independently by Avez and Bender [14] and Oi and
Mizusaki [15].
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TABLE I. Test of number and angular momentum projection
for the wave function of Eq. (20), for which Jz ¼ 1=2.

hNJJzjqwi2
N J analytic numerical

1 3=2 0 0.000 00

1 5=2 u2 ¼ 0:64 0.640 00

3 1=2 0 0.000 00

3 3=2 v2=7 � 0:051 43 0.051 43

3 5=2 v2=2 ¼ 0:18 0.180 00

3 7=2 0 0.000 00

3 9=2 5v2=14 � 0:128 57 0.128 57
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