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Colloids with patchy metal coating under laser irradiation could act as local heat sources and generate

temperature gradients that could induce self-propulsion and interactions between them. The collective

behavior of a dilute solution of such thermally active particles is studied using a stochastic formulation. It

is found that when the Soret coefficient is positive, the system could be described in a stationary state by

the nonlinear Poisson-Boltzmann equation and could adopt density profiles with significant depletion in

the middle region when confined. For colloids with a negative Soret coefficient, the system can be

described as a dissipative equivalent of a gravitational system. It is shown that in this case the thermally

active colloidal solution could undergo an instability at a critical laser intensity, which has similarities to a

supernova explosion.
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The motion of colloidal particles in a solution in the
presence of an externally applied temperature gradient,
which is known as thermophoresis or the Soret effect [1],
has been studied since the 19th century and observed in a
variety of systems [2]. Although its existence can be well
formulated in nonequilibrium thermodynamics within lin-
ear response theory [3], many aspects of the microscopic
nature of the phenomenon have remained a subject of
investigation to date [4]. The effect has also been shown
to provide a powerful tool for manipulating macromole-
cules and colloids [5]. Since in the phoretic transport
mechanisms the colloids experience no net force, it is
possible to take advantage of them to design self-propelled
particles by incorporating a built-in mechanism that pro-
vides asymmetric sources that could generate and maintain
the necessary gradient across them needed for propulsion
[6,7]. Recently, Jiang et al. [8] have shown that silica beads
half-coated with gold when irradiated with a defocused
laser beam exhibit such a propulsion, as the gold caps act as
heat sources when they absorb light. Moreover, even with-
out the self-propulsion, laser-heated gold-coated colloids
have been shown to undergo substantially enhanced
Brownian diffusion, which is related to the modification
of the temperature in the medium and the resulting changes
in the viscosity [9]. Since such thermally active colloids
would create temperature profiles around them that decay
as 1=r, in addition to causing them to self-propel, thermo-
phoresis could provide a mechanism for them to interact
with one another in a solution. The long-ranged nature of
the intercolloidal thermophoretic interaction could lead to
interesting collective behaviors.

Here we construct a stochastic formulation to describe
the collective behavior of a number of thermally active
colloids. At the long time and large length scale limit and
for dilute solutions, the formulation simplifies to a set of
two nonlinear coupled differential equations for the density
and temperature profiles in the medium. In a stationary

state, we provide a number of examples for which the
equations could be solved exactly. They show a depletion
effect for the case of a positive Soret coefficient and an
instability at a finite laser intensity for negative Soret
coefficient.
We consider N colloidal particles of radius R that are

half-coated with a metal that absorbs the laser light with an
efficiency �, thus creating a local source of heat of magni-
tude �I, where I is the intensity of the laser (see Fig. 1). We
assume that the laser intensity is uniform throughout the
space, and thus ignore any optical confinement effect. In an
externally generated temperature gradient, the colloids
move with a drift velocity v ¼ �DTrT, where DT is the
thermodiffusion coefficient. The asymmetric heat genera-
tion around each colloid provides a mechanism to create
and maintain a local temperature gradient that leads to
propulsion via self-thermophoresis [7]. For a Janus-sphere
colloid, the propulsion velocity can be calculated as v0 ¼
�IDT=ð6�Þ, where � is the thermal conductivity of
the medium [7,8,10]. The stochastic motion of the ith
colloid is described by its instantaneous position riðtÞ and

FIG. 1 (color online). The metal-coated Janus spheres under
irradiation could self-propel in the directions shown by the
(small green) arrows and interact with one another via the
long-ranged temperature profiles they generate. The interactions
are mutually repulsive when ST > 0 and attractive when ST < 0.
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orientation niðtÞ that is a unit vector. They satisfy the

Langevin equations dri
dt ¼ v0ni �DTrTðriÞ þ �i and

dni

dt ¼ �i � ni, in which �i and �i are Gaussian-distributed

noise terms. Since each colloid generates heat with an
overall (surface-average) rate of 1

2 �I, the temperature pro-

file at the location of each colloid is affected by the heat
generated by all the other colloids. Since the temperature
profile equilibrates considerably faster than the colloids,

we have Tðr; tÞ ¼ T0 þ �IR2

2�

P
j

1
jr�rjðtÞj , to the lowest order

in the multipole expansion of the heat source distribution.
While this approximation should be valid for sufficiently
dilute colloidal solutions, the contributions from higher
multipoles could readily be added to the above temperature
profile. To probe the colloidal activity at shorter times than
the rotational diffusion time, we need to incorporate the
time dependence of heat diffusion, which could lead to
anomalous dynamics of the colloid [11].

The Fokker-Planck equation for the probability distri-
bution, P ðr;n; tÞ � hPN

i¼1 �ðr� riðtÞÞ�ðn� niðtÞÞi, can
be constructed from the Langevin equations as

@tP þr � ½v0nP �DTðrTÞP �DrP � �DrR2P ¼ 0;

(1)

where R � n� @n. In Eq. (1), D and Dr are the transla-
tional and rotational diffusion coefficients, respectively,
and represent the corresponding widths of the Gaussian
probability distributions for the noise terms �i and �i

in the Langevin equations. In a medium with uniform
temperature T, we have D ¼ kBT=ð6��RÞ and Dr ¼
kBT=ð8��R3Þ, where � is the viscosity of water. Equation
(1) should be complemented with the heat diffusion
equation

�r2T ¼ 2��IR2

�

Z
n
P ðr;nÞ; (2)

which describes how the temperature profile is affected by
the spatial distribution of the colloids due to their role as
motile heat sources. Equations (1) and (2) should be self-
consistently solved to obtained the probability distribution
of the colloids as well as the temperature profile in the
medium.

Let us define the density �ðrÞ ¼ R
n P ðr;nÞ, the polar-

ization field pðrÞ ¼ R
n nP ðr;nÞ, and the nematic order

parameter QðrÞ ¼ R
n½nn� 1

3 I�P ðr;nÞ. Performing
R
n

on Eq. (1), we can obtain an equation for the density as
@t�þ v0r � p�r � ½DTðrTÞ�þDr�� ¼ 0, which is
incomplete since it has a source term in the form of�v0r �
p, which is present due to the self-propulsion of the col-
loids. Performing

R
n n� Eq. (1), we can obtain an equa-

tion for the polarization field as

@tpþ 2Drpþ v0

3
r�þ v0r �QðrÞ

� r � ½DTðrTÞpþDrp� ¼ 0; (3)

where R2n ¼ �2n is used. Equation (3) is also incom-
plete as it depends on Q, and this hierarchy will continue
for higher order cumulants.
To make further progress, we can seek to truncate the

hierarchy and simplify Eq. (3) in some approximation. At
time scales much longer than 1=Dr, the time derivative
term in Eq. (3) is considerably smaller than 2Drp and can
thus be ignored. For sufficiently dilute solutions, i.e., when
�R3 � 1, and in the absence of any external means that
could induce polarization, such as external magnetic field
for particles with a magnetic dipole moment or gravity
[12,13], we can ignore the r �QðrÞ term. Since the time
scale is much longer 1=Dr, any transient or initial ordering
would also have decayed. Finally, at length scales much
larger than R, the gradient terms in Eq. (3) can be ne-
glected, and the equation can be approximated as

p ’ � v0

6Dr

r�: (4)

Using Eq. (4), we can estimate that Q�r�r�, and thus
find that ignoring Q is consistent with our assumption of a
dilute solution. Putting Eq. (4) back in the density equa-
tion, we find

@t��r � ½Deffr�þDTðrTÞ�� ¼ 0; (5)

where Deff ¼ Dþ v2
0=ð6DrÞ is the enhanced effective dif-

fusion coefficient for the self-propelled active colloid
[6,11], which could also be rewritten as Deff ¼
D½1þ 2

9 Pe
2� (for a sphere) in terms of the Peclet number

Pe ¼ v0R=D [12]. Equation (5) should be solved in con-
junction with the heat diffusion equation, which reads

�r2T ¼ 2��IR2

� �.

In the stationary state, Eq. (5) is satisfied if Deffr�þ
DTðrTÞ� ¼ 0, which can be written asr ln� ¼ � DT

Deff
rT.

If we ignore the temperature dependence in Deff , and use
the Soret coefficient ST ¼ DT=D, this can be integrated to
yield

�ðrÞ ¼ �0 exp

�
�ST½TðrÞ � T0�

ð1þ 2
9 Pe

2Þ
�
: (6)

Putting the above equation back in the heat diffusion
equation yields a single nonlinear equation for the tem-
perature profile as

�r2T ¼ 2��IR2�0

�
exp

�
�ST½TðrÞ � T0�

ð1þ 2
9 Pe

2Þ
�
: (7)

Equation (7), which is reminiscent of the Poisson-
Boltzmann equation for electrolytes (see below), could
be solved for the temperature profile, which then yields
the stationary-state density profile of the colloids via
Eq. (6). Note that the Soret coefficient could be both
positive and negative.
We can define an appropriate dimensionless temperature

as � � jST j½TðrÞ�T0�
1þ2

9 Pe
2 , and a characteristic length scale
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‘ � �IR2jSTj
2�ð1þ 2

9 Pe
2Þ ; (8)

which is reminiscent of the Bjerrum length in the electro-
static analogy. We have

�r2� ¼ k2e��; (9)

where k2 ¼ 4�‘�0, and the sign choice is �sgnðSTÞ.
Equation (9) is subject to the constraint N ¼ �0

R
r e

��.

We now discuss a number of interesting exact solutions
for the stationary state described by Eq. (9). We consider
colloidal solutions that are confined in some region in
space and examine the effect of the dimensionality of the
confinement geometry as well as the nature and the
strength of the thermotactic coupling. The confinement
could in practice come from the trapping effect of nonuni-
form laser beams, which could provide a very efficient
tuning parameter. For simplicity, we model the confine-
ment by introducing sharp boundaries such as confining
walls.

When ST > 0, the electrostatic analogy is complete as
the colloidal particles mutually repel one another, and the
overall heat flux coming out of the solution through
the boundaries of the confining ‘‘cage’’ is reminiscent of
the electric field flux lines, which could be thought of as an
outer shell of opposite charges maintaining neutrality and
stability. Using Gauss theorem on Eq. (9) and assuming a
symmetric confining cage of area A, we find an expres-
sion for the normal gradient of the field at the boundary as
@?�jS ¼ �4�‘N=A. In practice, if the confinement is
achieved by using a material wall, the corresponding in-
teraction between the colloids and the wall should be
incorporated in the original Fokker-Planck equation.

We denote the ST > 0 case as thermorepulsive. This
problem can be solved exactly for 1D and 2D confinements
[14], and numerically for the 3D case [15]. When the
colloidal solution is confined between two plates of lateral
size L and distance 2h, the density profile of the colloids is
given as

�ðxÞ ¼ �0

½1þ 2�2‘2

k2
ðN
L2Þ2�cos2ðkxffiffi2p Þ ; (10)

where �0 is the concentration at the edge of confinement
(wall) and k satisfies ðkhffiffi

2
p Þ tanðkhffiffi

2
p Þ ¼ �‘hðN

L2Þ. The profile of
Eq. (10) describes an accumulation of the colloids near the
confining boundary (that is reminiscent to counterion con-
densation [14]) and a corresponding depletion of the cen-
tral region of the system. In the strong coupling limit when
N‘h=L2 	 1, we can find an approximate solution to the
transcendental equation as kh ’ �ffiffi

2
p ½1� 1

�ðN‘h=L2Þ�. In this

limit, the ratio between the density of the colloids in the
middle and at the edge can be found as �m

�0
’ 1

4 ðN‘h=L2Þ�2,

which shows a significant depletion effect. Note that the
depletion becomes stronger as h is increased, when other

parameters are kept fixed. The length 1=½2�‘ðN=L2Þ� is
equivalent to the Gouy-Chapman length in the electrostatic
analogy [14]. For a colloidal solution trapped in a cylin-
drical cage of length L and width 2h, the density profile
reads

�ðrÞ ¼ �0

½1þ 1
2 ðN‘

L Þ�2½1� 1
8 k

2r2�2 ; (11)

where kh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðN‘=LÞ
2þðN‘=LÞ

q
. The strong coupling limit in this

geometry corresponds toN‘=L	1, in which case we have
�m

�0
’ 4ðN‘=LÞ�2. Note that the magnitude of depletion is

independent of the confinement size in this geometry. The
ratio ‘N=L is analogous to the so-called Manning-Oosawa
parameter for highly charged rodlike polyelectrolytes [14].
A similar profile can be found when the colloidal solution
is confined to a spherical cage of diameter 2h, where in the
strong coupling limit that corresponds to N‘=h 	 1 in this
case we have �m

�0
’ 21:4ðN‘=hÞ�2. Here, the depletion is

inversely related to the size of the cage; namely, it de-
creases for larger confinement sizes.
When ST < 0, the colloids attract each other and the

problem is analogous to a gravitational system. We thus
denote this case as thermoattractive. Let us go back to the
1D confinement geometry, where the relevant thermopho-
retic coupling constant is N‘h=L2 as discussed above. In
this case, Eq. (9) (with the positive sign choice) can be
integrated in closed form and the density profile can be
calculated. The stationary-state density profile (not pre-
sented here for brevity) shows that the particles will accu-
mulate towards the center of the confined area. Figure 2
shows that the ratio between the density in the middle and
at the edge of the confinement region increases as the
thermophoretic coupling constant increases, up to a critical
point beyond which a stable (stationary-state) solution no
longer exists. [As compared to the average density in the
confining box N=ð2hL2Þ, �m increases linearly with the
coupling constant whereas �0 decreases exponentially.]
The onset of instability occurs at ð4�‘hN=L2Þc ¼ 2, at
which ð�m=�0Þc ¼ 3:29. Similar instabilities exist in the
2D and 3D confinement cases [16], where N‘=L and N‘=h
play the role of the thermophoretic coupling constant,
respectively.
The instability occurs because the particles that act as

heat sources attract each other and could result in a sus-
pension that becomes increasingly denser and hotter. In
this case, the heat flux at the outer boundary of the system
cannot balance the heat generated inside the confined
region, which leads to an uncontrolled buildup of thermal
energy. In molecular systems, an equation of the form
of Eq. (7) (with ST < 0) is used to describe exothermic
combustion reactions that could lead to thermal explosion
[16]. It is not possible to predict what happens in our
colloidal system above the onset of this instability using
the present formulation, as the approximations used in its
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derivation are no longer valid. Within our rough analogy to
a gravitational system, this explosion would have similar-
ities to a type I supernova for a white dwarf, for which
accreted material from the surroundings accelerates exo-
thermic nuclear reaction to the point that the system be-
comes unstable [17]. This analogy is very rough, however,
as the colloidal system operates in the dissipative regime as
opposed to the inertial and conserved dynamics of the
gravitational system.

We can estimate the length scale ‘ that characterizes the
strength of thermophoretic interactions from the experi-
ment of Ref. [8]. For R ¼ 1 �m, we can estimate that for a
fully coated bead that is not self-propelled due to lack of
asymmetry (Pe ¼ 0) ‘� 10 �m, while for the self-
propelled colloids we could have a reduction by 2 orders
of magnitude, namely, ‘� 0:1 �m. Considering the con-
finement length to be h� 10–100 �m, we find that it is
very easy to realize a sufficiently dilute experimental sys-
tem, which is in the strong coupling limit. While the laser
intensity provides a continuous tuning parameter, the pres-
ence or absence of self-propulsion could move the system
much faster in the parameter space. We note that Eq. (5)
could be used to study the time dependence of the non-
linear dynamics of the colloids as in the analogous electro-
kinetic system [18].

The are a number of effects that we have not considered
in the present analysis. We have neglected the temperature
dependence of Deff in the calculation that led to Eq. (6),
which could introduce corrections of the order of �T=T to
the argument of the exponential. Moreover, hydrodynamic
interactions have been shown to lead to nonlocal rela-
tions between the temperature profile and the diffusion

coefficient of tracer particles [19]. However, we do not
expect these effects to change the qualitative behavior of
the system. We have also neglected the hydrodynamic
interaction between the colloidal particles themselves.
This is justified, as self-thermophoretic colloids are effec-
tively source dipoles and lead to velocity fields that decay
as 1=r3, which is faster than the thermophoretic interaction
that decays as 1=r2. Genuine electrostatic interaction be-
tween the colloids—if they are charged—will be similarly
subdominant if they are screened due to the abundance of
salt and counterions. However, unscreened electrostatics—
if it could be realized—would lead to an interesting varia-
tion of the theoretical formulation in which temperature
and electrostatic potential could be grouped together in an
effective Poisson-Boltzmann equation.
In conclusion, we have studied the collective behavior of

active colloids that act as mobile heat sources and found
that thermorepulsive colloids could organize into hollow
bands, tubes, or shells, depending on the geometry, while
thermoattractive colloids could go unstable. We note that
similar equations could be used to study collective chemo-
taxis of diffusiophoretically active particles using the anal-
ogy of nonequilibrium phoretic phenomena [7].
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