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Ring polymers remain a challenge to our understanding of polymer dynamics. Experiments are difficult

to interpret because of the uncertainty in the purity and dispersity of the sample. Using both equilibrium

and nonequilibrium molecular dynamics simulations we have investigated the structure, dynamics, and

rheology of perfectly controlled ring-linear polymer blends of chains of up to about 14 entanglements per

chain, comparable to experimental systems. Linear contaminants increase the zero-shear viscosity of a

ring polymer melt by about 10% around one-fifth of their overlap concentration. For equal concentrations

of linear and ring polymers, the blend viscosity is about twice that of the pure linear melt. The diffusion

coefficient of the rings decreases dramatically, while the linear polymers are mostly unaffected. Our

results are supported by a primitive path analysis.
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While much has been learned about linear and branched
polymers [1,2], a comparable understanding of ring or
cyclic polymers is lacking. Ring polymers, as they do not
have free ends, represent the simplest model system where
reptation is completely suppressed. Also, mitochondrial
and plasmid DNA are usually cyclic, and melts of rings
are considered highly relevant model systems used to
understand chromatin folding in the cell nucleus [3,4].
This makes ring polymers perfect test cases for both fun-
damental polymer and biophysics.

Early experimental studies on pure ring polymer melts
gave inconsistent results, most likely because the samples
were contaminated with linear chains [5–7]. Also the ex-
istence of self-knots could not be controlled. More recently
experiments have been conducted [8] based on new char-
acterization and purification techniques [9,10]. For melts
of nonconcatenated polystyrene rings with molecular
weight (MW) to entanglement MW ratios of 9.2 and
11.3, where the entanglement MW is 17 500 g=mol,
Kapnistos et al. [8] reported that the stress relaxation
modulus GðtÞ follows a power-law decay with no sign of
a rubbery plateau. The authors used scaling arguments to

showGðtÞ � t�2=5, a result in agreement with the data up to
the terminal time. Milner and Newhall [11] introduced the
‘‘diffusion of centrality’’ concept and mapped the ring
conformations to annealed treelike structures and found a

similar prediction of GðtÞ � t�1=2. Kapnistos et al. [8] also
reported that the smallest concentration of linear contam-
inants that affects the rheology of the ring melt is almost
two decades below the overlap concentration of the linear
chains. Despite the synthetic effort, the characterization
and control of the experimental systems including polydis-
persity, knotting, concatenation, and linear contaminants is
far from perfect. Because of this, computer simulations of
optimized models, which by now easily reach effective

experimental molecular weights, are perfect to test con-
cepts for precisely defined systems under well-controlled
conditions. Our own recent simulations [12] of a melt of
nonconcatenated and unknotted ring polymers have shown
that GðtÞ � t�� with � decreasing from 0.5 to 0.45 with
increasing chain length.
Here we employ molecular dynamics (MD) simulations

to study the structure, dynamics, and rheology of ring-
linear polymer blends of equal chain length. We consider
two lengths of N ¼ 200 and 400 monomers per chain. For
the model used here the entanglement length of a melt of
linear polymers is Ne ¼ 28� 1 [13] which corresponds to
N=Ne � 7:1 and 14.3 entanglements per chain. For this a
bond bending potential (k� ¼ 1:5�) along the chains is
introduced, leading to a Kuhn length of lk ffi 2:79� [13],
where � and � are the energy and length scales, respec-
tively. Ne is determined by a primitive path analysis
[13,14], which is known to yield Ne values which properly
reproduce rheological data [15,16]. In our systems, all
rings are perfectly monodisperse, unknotted, and noncon-
catenated, thus allowing for a rather stringent test of vari-
ous concepts currently discussed in the literature. Previous
simulations of such mixtures have only considered short
chain lengths and did not measure any rheological proper-
ties [17,18]. While different polymer melts can be related
to each other by theN=Ne ratio, we note that for the present
comparison to experiment [8] also the ratio of the Kuhn
length and the packing length lk=p are not that different,
namely, 6.5 for our simulation model [13] and 3.8 for a
polystyrene melt [19].
The topological constraint that a ring must remain un-

knotted and nonconcatenated leads to nontrivial behavior
even for the static properties of a melt or concentrated
solution of rings. Rings are found to be approximately
Gaussian at short chain lengths, while for larger lengths
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the nonconcatenation dominates the conformational statis-
tics. Cates and Deutsch [20] conjectured that the exponent
in the mean-square gyration radius, hR2

gi � N2�, should be

less than � ¼ 1=2 and greater than 1=3 and used a simple
free energy argument to arrive at a value of 2=5, which was
later supported by simulation [21,22] and experiment [23]
for systems with less than 13 entanglements per chain.

However, for larger rings a scaling of hR2
gi � N2=3 has

been shown [24–26]. Altogether we expect a smooth cross-
over from a Gaussian regime (� ¼ 1=2) via a regime with
� ¼ 2=5 for rings of length of a few Ne to the ‘‘crumpled
globule’’ regime (� ¼ 1=3) for rings significantly exceed-
ing Ne. The universal scaling behavior of hR2

gðNÞi for a
pure ring polymer melt is demonstrated in Fig. 1 using
results from many different simulations. Only short-chain
atomistic data for polyethylene [27] deviate from the curve
[28]. From N=Ne � 15 the onset of the collapsed regime is
clearly observed in agreement with the predictions of
Vettorel et al. [24].

We present new MD simulations using the same semi-
flexible bead-spring model [29] as in our previous work
[12,26]. The production runs were carried out using
LAMMPS [30] with a time step of 0:01�, � being the time

scale, and an overall monomer density of � ¼ 0:85=�3.
The largest simulations ran in parallel on 2048 Blue Gene/
P cores. Systems studied range from �linear �
Mlinear=ðMlinear þMringsÞ ¼ 0 to 1, where M is the number

of chains of a given architecture. For N ¼ 200 the total
number of chains ranged from 200–260 while for N ¼ 400
the systems were composed of 200–400 chains. The initial
configuration for each blend system with �linear � 0:115
was created by adding linear chains at random locations

within an equilibrated ring melt configuration. Chains
which most closely matched a Gaussian chain were taken
from an equilibrated pure linear melt. For the cases with
�linear � 0:25 and 0.5 the appropriate number of rings were
randomly removed while for the case withMrings ¼ 10 and

Mlinear ¼ 250, rings were taken from an equilibrated pure
ring melt and inserted into a linear melt making sure that
the nonconcatenation constraint was observed. Because
these insertions lead to monomers being very nearly over-
lapping, a short simulation was carried out for 100� while
limiting the bead displacement at every step to 0:001�.
During this short run the box size was increased linearly so
as to give the correct density at the final step. This proce-
dure produces nonequilibrated starting configurations.
Long MD simulations of 4–8� 107� were performed to
equilibrate each system where each architecture moved at
least twice its root-mean-square gyration radius and in
some cases more than 20 times this value.
Results for the mean-square gyration radius for the rings

and linear chains normalized by their respective pure melt
values are shown in Fig. 2(a). For the rings with N ¼ 200,
hR2

gi is found to increase with increasing linear concentra-

tion. At �linear � 0:96, hR2
gi ¼ 45:3� 2:2�2, which is 1.5

times larger than the value of the pure ring melt. For a
Gaussian ring hR2

gi ¼ Nlkl=12 ¼ 45:2�2, where l is the

average bond length. For the rings with �linear � 0:96 the
static structure function scales as SðqÞ � q�2 for

2	=hR2
gi1=2 < q< 2	=lk, even though the rings cannot

sample the whole conformational space of a Gaussian
ring [31]. For the N ¼ 400 systems a similar swelling
behavior is found for the rings. The linear chains are found
to be Gaussian for all combinations of N and �linear. At
small values of �linear the rings are partially collapsed as
discussed above. As the fraction of linear chains increases,
the size of the rings grows because it is entropically favor-
able for the linear chains to thread the rings. At infinite
dilution the nonconcatenation constraint vanishes and the
rings are found to be multiply threaded and nearly
Gaussian [17,31,32].
The diffusion coefficients D, which are determined by

the long-time behavior of the mean-square displacement of
the center-of-mass of the chains, are shown in Fig. 2(b).
The diffusivity of the rings for both values of N is found to
steadily decrease with increasing fraction of linear chains
until a dramatic decrease is observed. With the overlap

concentration of linear chains being c	 ¼ �	
linear� ¼

N=ð4=3Þ	hR2
gi3=2, this transition corresponds to approxi-

mately 0:1� ¼ 1:5c	 for N ¼ 200 and 0:04� ¼ 0:9c	 for
N ¼ 400. For N ¼ 400 the diffusion coefficient of the
rings at �linear ¼ 0:5 is reduced by a factor of about 75
compared to the pure ring melt. While the linear chains
clearly restrict the motion of the rings, the motion of the
linear chains for both values of N is largely independent of
the blend composition, which is consistent with early
experimental results [33].

FIG. 1 (color online). Universal behavior of hR2
gðNÞi for pure

ring polymer melts. The data were obtained using different
simulation methods and different models. The reference line
with slope 1=5 corresponds to the Gaussian regime while that
with a slope of �2=15 corresponds to the collapsed regime.
Representative conformations from Ref. [26] are shown.
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Linear chains have free ends and undergo reptation
independently of whether the surrounding chains are rings
or linear, and accordingly their diffusion is found to be
independent of �linear. Rings in a pure melt do not reptate
like linear chains. As linear chains are added to the ring
melt, the rings become threaded and the nature of their
motion changes. A threaded ring can only diffuse through
the release of threads. For a one-thread situationMills et al.
[34] have shown that the diffusion coefficient of the ring is
D� N�1

ringN
�1
linear. At high fractions of linear chains the rings

become multiply threaded and their diffusion is severely
hindered. In this regime the motion of a ring monomer is
coupled to the motion of surrounding linear chains. This
implies Rouse dynamics for the ring with a monomer
relaxation time governed by the reptation relaxation of
the linear chains, leading to a relaxation time scaling of
N2

ringN
3
linear. This argument is due to Graessley [35] and

predicts D� N�1
ringN

�3
linear.

The zero-shear viscosity computed as 
0 ¼
R1
0 GðtÞdt

is shown as a function of �linear in Fig. 2(c). A striking
result is the clear indication that the smallest concentration
at which linear contaminants alter the viscosity of a ring
melt considerably (about 10%) for the chain lengths con-
sidered here is �linear � 1=100 or c	=5 with a strong
increase around c	. This threshold concentration is roughly
consistent with the change in D for the rings. We have
confirmed our values of 
0 by conducting nonequilibrium
MD simulations [36] where simple steady shear is im-
posed. For these simulations a Nosé-Hoover thermostat
[30,36] with a relaxation time of 10� was used. Note that
the thermal velocity is much larger than the largest velocity
difference imposed by the shear. As shown in Fig. 3 for
N ¼ 400, when 
ð _�Þ is extrapolated to _� ! 0 the agree-
ment with 
0 is very good [37]. Similar agreement is found
forN ¼ 200. For both values ofN the viscosity at�linear ¼
0:5 is larger than the viscosity at all other concentrations
investigated. For the simulated blends with 14.3 entangle-
ments per chain we find 
ð�linear¼0:5Þ=
0ð�linear¼1Þ*
1:8, where 
 of the blend is taken from the nonequilibrium
MD simulations (cf. Figure 3) which gives a value that is
still increasing slightly. These findings are in good agree-
ment with the experimental results of Roovers [38] who
showed for ring-linear blends of polybutadiene
with approximately 15.3 entanglements per chain that the
maximum in 
0 occurs at �linear ¼ 0:6 and 
0ð�linear �
0:5Þ=
0ð�linear ¼ 1Þ � 2:2. The viscosity results in
Fig. 2(c) provide a direct macroscopic indication of the
concentration of linear contaminants in experimental
samples. As pointed out by Kapnistos et al. [8], the data
also suggest how the viscosity of a linear melt may be
tuned by adding ring polymers.

FIG. 3 (color online). Viscosity versus shear rate _� for N ¼
400 obtained from nonequilibrium MD simulations [36]. Zero-
shear viscosities obtained from the equilibrium simulations are
shown on the far left, for �linear ¼ 0; 0:12; 1. Note that the
horizontal scale is interrupted. Inset: Ratio of pure linear to
pure ring melt viscosity versus number of entanglements per
chain for the simulated systems and the experimental data of
Refs. [8,39].

FIG. 2. (a) Mean-square gyration radii, (b) diffusion coeffi-
cients, and (c) zero-shear viscosity versus �linear. The overlap
concentration of linear chains c	 is indicated for the two values
of N. For the rings with N ¼ 200 and 400, hR2

gi0 ¼ 30:8 and

52:9�2, respectively, while for the linear chains hR2
gi0 ¼ 88:9

and 180:8�2. Note that the horizontal axis is interrupted. Lines
are drawn as a guide for the eye.

PRL 108, 038301 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

20 JANUARY 2012

038301-3



To quantify the extent of threading, a primitive path
analysis [13,14] was conducted where the end monomers
of the linear chains were fixed and the rings were allowed
to relax freely. This procedure causes the linear chains to
be pulled taut while the rings shrink towards their center
with unthreaded rings collapsing to points. The time scale
for the primitive path procedure is 103� which satisfies
the condition of being equal to or faster than �e ¼ 3200�,
the Rouse time of a linear chain of Ne. Averaging over
10–20 configurations incremented by 2� 106�, with
N ¼ 200 the percentage of unthreaded rings for �linear �
0:03, 0.12, 0.25, 0.96 is 80.0%, 30.3%, 11.7%, 0.0%, re-
spectively. For N ¼ 400 with �linear � 0:015, 0.03, 0.12,
0.5 we find 86.0%, 59.0%, 7.0%, 0.0%, respectively.
Figure 4(a) shows a final configuration for �linear�0:015
where the vast majority of rings are found to be unthreaded.
The sensitivity of a ring melt to linear contaminants is
demonstrated by the fact that the viscosity of this system
is already 1.4 times larger than the pure ring melt value.
Figure 4(b) shows a final configuration for �linear ¼ 0:5
where a selected ring and the polymers it is entangled with
are shown. Given the large number of entanglements at this
composition, the dramatic decrease in the diffusivity of the
rings and the increase in the blend viscosity in comparison
to the pure ring melt value are easily understood.

The present work provides a complete scan of compo-
sitions of two different ring polymer-linear polymer melts
for dynamical quantities such as viscosity and chain diffu-
sion. One striking result is that the linear contaminants start
significantly affecting the ring melt viscosity at a concen-
tration well below their overlap concentration. This simu-
lation result is in perfect qualitative agreement with the
experimental observation of Ref. [8]: according to both
simulation and experiment, there is clearly an effect below
the overlap concentration. However, quantitatively we de-
tect the onset of a viscosity change (10% increase for rings

and linear chains withN=Ne � 10) at�linear � 0:01, while
Kapnistos et al. [8] reported a twofold viscosity increase in
comparison to the ‘‘pure as currently possible rings’’ at a
much smaller concentration of �linear ¼ 0:0007. To pro-
vide an intuitive picture of these concentrations one can
estimate what would be the typical distances between
chains. For �linear ¼ 0:0007 the typical distance between

linear chains ð�=NÞ�1=3 would be about 66� for N ¼ 200

and 83� for N ¼ 400. The diameter (2hR2
gi1=2) of the rings

is about 11� and 15� and of the linear chains about 19�
and 27�, respectively. Thus two linear chains would be
separated on average by about 4–5 ring diameters for
N ¼ 200, or by 4 ring diameters for N ¼ 400. And, im-
portantly, these rings would not be entangled since they are
unconcatenated and have no free ends. At �linear ¼ 0:01,
where our data indicate a 10% viscosity increase, distances
and chain extensions are all rather similar. While the two
works differ with respect to the onset concentration, fair
agreement is found for the ratio of the pure linear melt
viscosity to that of the (almost) pure ring melt as shown in
the inset of Fig. 3 [8,39]. Additionally, the simulation and
experimental results for the dependence of 
0;linear=
0;rings

on N=Ne are consistent not only with one another, but also
with the theoretical framework of Ref. [8] and our previous
result [12] which suggest a power-law dependence with
power close to 2.
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