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Semiflexible polymers subject to hydrodynamic forcing play an important role in cytoskeletal motions

in the cell, particularly when filaments guide molecular motors whose motions create flows. Near

hyperbolic stagnation points, filaments experience a competition between bending elasticity and tension

and are predicted to display suppressed thermal fluctuations in the extensional regime and a buckling

instability under compression. Using a microfluidic cross-flow geometry, we verify these predictions in

detail, including a fluctuation-rounded stretch-coil transition of actin filaments.
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Recent work on the motion of elastic filaments subject to
hydrodynamic forces has revealed complex nonlinear dy-
namics in the neighborhood of hyperbolic stagnation
points in the flow [1]. Unlike the simpler orbits of rigid
elongated objects in the presence of shear [2], these dy-
namics arise from the tension induced in the filament by an
extensional flow, which beyond a critical value can induce
an instability analogous to Euler buckling of a filament
with thrust at its two ends [3]. This predicted ‘‘stretch-
coil’’ transition, which is complementary to the ‘‘coil-
stretch’’ transition of flexible polymers [4], has recently
been observed with macroscopic fibers in cellular flows
generated by electrodynamic forcing [5].

At the microscopic level, among the many contexts in
which semiflexible polymers experience flow-induced
stresses is cytoplasmic streaming [6], in which molecular
motors translating along filaments (e.g., actin) entrain
fluid. Complex flows occur when the filament network is
disordered, leading to a self-organization process in which
filaments rearrange in response to flows they create [7].
This coupling is common to all systems in which elongated
particles produce and respond to flows, including concen-
trated motility assays in which filaments are moved by
surface-bound motors [8]; it is a hallmark of ‘‘active
matter’’ [9]. Intrinsic to these phenomena is a competition
between bending energy and tension [10] in the presence of
thermal fluctuations, a situation well-known for elastic
surfaces through such phenomena as the pearling instabil-
ity [11] and the wrinkling transition of vesicles [12].

In contrast to the well-developed study of equilibrium
fluctuations of free semiflexible polymers [13,14], their
nonequilibrium dynamics under tension has only begun
to be examined [15], leaving unexplored many phe-
nomena: suppression of fluctuations and emergence of
new dynamical scaling laws, with predictions in the case
of uniform tension [16], and rounding of shape transitions
at finite temperature, as shown for Euler buckling [17].
Here we present the first comprehensive study of these

issues, by using microfluidics [18] to subject actin fila-
ments to extensional flows. Throughout, we emphasize a
description based on a low-dimensional dynamical system.
The extensional flow u ¼ ðu; v; wÞ ¼ ð _�x;� _�y; 0Þ

was produced in the midplane of a cross-slot microchannel
375 �m wide and 140 �m high (Fig. 1), manufactured in
polydimethylsiloxane by soft lithography [18]. Filaments
were studied near the stagnation point by epifluorescence
microscopy with a 100� oil-immersion objective (numeri-
cal aperture 1.4) on a Zeiss Axiovert 200 M inverted
microscope. An observation area 80� 80 �m2 was cap-
tured by an EMCCD camera (Evolve, Photometrics;
512� 512 pixels). A mechanical chopper (Thorlabs) syn-
chronized with the camera, in the beam path of a blue laser
(473 nm, 144 mW, Extreme Lasers, Seabrook, TX), re-
duced exposure time to �2 ms, minimized photobleach-
ing, and allowed resolution of higher shape modes. The
flow was driven by a syringe pump (PHD2000, Harvard
Instruments), with strain rates 0:03 � j _�j � 1:5 s�1.
Particle tracking velocimetry showed deviations
j� _�xyz= _�j across the observation window that were

<5%. By changing the pressure difference �P between
the channel outlets at rates of 0:1–1000 Pa=s, we trapped
single filaments at the stagnation point for times suffi-
cient to acquire up to 3000 images, limited by photobleach-
ing. The fluid viscosity �, measured with a U-Tube
Viscometer (Rheotek), was varied from 1:7� 10�3 to
18:5� 10�3 Pa � s by the amount of glycerol in the buffer.
All measurements were at 23� 1 �C. Image acquisition
and flow control used LABVIEW; image processing and data
analysis were done in MATLAB.
The protocol for actin polymerization involves three

solutions. The first, 10� AB� (10 times concentrated
AB�), was composed of 250 mM imidazole-HCl,
250 mM KCl, 10 mM ethylene glycol tetraacetic acid, and
40 mMMgCl2, at pH 7.4; 10� ABþ differs by addition of
20 mM MgATP. These buffers were stored at �20 �C.
Globular actin (G-actin) stocks (4:5 mg=ml� 100 �M)
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were stored at�80 �C. Polymerization to form filamentous
actin (F-actin) was achieved by addition of 1=10th volume
of 10� ABþ, then stabilized by the addition of an equimo-
lar amount (to G-actin monomers) of Alexa Fluor 488
phalloidin (Invitrogen), dissolved to a final concentration
of �10 �M of G-actin, and then stored in the dark at 4 �C
for up to 3 months. For an experiment, an aliquot of
10� AB� stock was thawed and mixed with 9 parts of
deionized water-glycerol mixture and degassed to reduce
dissolved oxygen. Photobleaching was reduced by adding
to the final buffer (termed AG) an oxygen scavenger
consisting of 20 mM dithiothreitol, 0:2 mg=ml glucose
oxidase, 0:5 mg=ml of catalase, and 3 mg=ml of glucose.
The concentration of F-actin suitable for the experiments
was �2 nM and yielded filaments with lengths from 3 to
18 �m.

Consider an elastic filament of contour length L, diame-
ter a, with � � a=L 	 1, bending modulus A ¼ kBT‘p,

where ‘p is the persistence length, lying in the xy plane

between x ¼ �L=2. For small-amplitude fluctuations in
the position hðxÞ from y ¼ 0, its energy is

E ¼ 1

2

Z L=2

�L=2
dxfAh2xx þ �ðxÞh2xg; (1)

where subscripts indicate differentiation. The nonuniform
tension induced by the flow [19],

�ðxÞ ¼ 2�� _�

lnð1=�2eÞ ðL
2=4� x2Þ; (2)

which peaks at the center and vanishes at the filament
ends, is positive (extensional) for _� > 0 and compressional
otherwise [20]. We first focus on extensional suppression
of fluctuations. The often-used Fourier decomposition
of hðxÞ [13,16] is incompatible with the force- and
torque-free boundary conditions at the filament ends.
Instead, the Euler-Lagrange equation of (1) defines a set

of eigenfunctionsWðnÞ (and eigenvalues �n) with boundary
conditions Wxxð�L=2Þ ¼ Wxxxð�L=2Þ ¼ 0 [3,21]. Under
the convenient rescaling � ¼ �x=L, these obey

WðnÞ
4� � �@�½ð�2=4� �2ÞWðnÞ

� 
 ¼ �nW
ðnÞ: (3)

The eigenvalues �n ¼ L4�n=�
4A are functions of [22]

� ¼ 2� _�L4

�3A lnð1=�2eÞ : (4)

When � ¼ 0, the WðnÞ are eigenfunctions of the one-
dimensional biharmonic equation

W�¼0 ¼ A sinkxþ B sinhkxþD coskxþ E coshkx: (5)

The wave vectors kn satisfy cosknL coshknL ¼ 1, with

k0 ¼ 0 (the constant solution Wð0Þ ¼ 1), and knL ’ ðnþ
1=2Þ� for n � 1. Even if the W’s cannot be found analyti-
cally [23], a numerical solution for � � 0 is straightfor-

ward. Figure 2(a) shows the first four WðnÞ for � ¼ 0 and

Wð1Þ for � ¼ 100; remarkably, the shape of the fundamen-
tal bending mode is nearly independent of �, a result to
which we return below. A point not previously recognized

[13] is that if hðxÞ ¼ P
nanW

ðnÞðxÞ, then for any � the
energy decomposes into a sum of contributions from inde-
pendent modes: E ¼ ð1=2ÞPn�na

2
n. This follows from in-

tegrations by parts, Eq. (3), and boundary conditions that

render the operator self-adjoint and the WðnÞ orthogonal
(and we assume they are normalized). Equipartition then
yields hamani ¼ �mnL

4=�4‘p�n, and the local variance

VðxÞ ¼ h½hðxÞ � �h
2i is

Vðx; �Þ ¼ L3

‘p�
4

X1
n¼1

WðnÞðxÞ2
�nð�Þ : (6)

As the contribution to �n from the bending energy

grows like ðnþ 1=2Þ4, the fundamental mode Wð1Þ domi-
nates. This is seen in Fig. 2(b), where we plot the measured

FIG. 1 (color online). Experimental setup. (a) Microfluidic cross-flow geometry controlled by a pressure difference�P between inlet
and outlet branches. (b) Close-up of the velocity field near the stagnation point, showing a typical actin filament. (c) Raw contour (red)
of an actin filament and definition of geometric quantities used in the analysis.
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variance VðxÞ= �Ve along the filament, where �Ve ¼
½Vð�L=2Þ þ VðL=2Þ
=2 is the mean end point fluctuation,
averaged over all available data (some 106 points),
spanning nearly 5 orders of magnitude in �. Although
the ‘‘W’’ shape is at first sight surprising, it simply reflects
the presence of two nodes in the fundamental mode;

it is well-approximated by the � ¼ 0 function ½Wð1ÞðxÞ=
Wð1ÞðL=2Þ
2, a comparison justified by the aforementioned
insensitivity of the mode shape to �. Then, a simple proxy
for the filament-averaged variance is �Ve, shown in Fig. 2(c)
to be suppressed by tension for �*1. It suffices to take
only the first two terms in the expansion (6) to achieve
excellent agreement with both the zero-tension limit and
the large-� behavior �Ve � ��1, with ‘p as the only free

parameter. We obtain ‘p¼10�3�m, a value consistent

with the known range [13,14,24].
Starting from an arbitrary initial configuration, the vari-

ance in h grows with time, ultimately reaching the steady-
state value discussed above. The characteristic time to
achieve saturation can be computed from the linearized
mode dynamics of hðx; tÞ [16], which also yields (below) a
criterion for the onset of the stretch-coil transition in the
compressional regime. By using the scalings employed in
(3) and a rescaled time T ¼ j _�jt, we find [1]

4j�j½hTþsgnð _�Þh
¼�h4�þ�½ð�2=4��2Þh���4�h�
:
(7)

The tension term on the right-hand side of (7), unlike the
related force term on the left-hand side of (3), is not a total
derivative with respect to �. This can be traced to a
combination of the anisotropic drag coefficient of a slender
body and the fact that the background flow that enters the
drag force in (7) through the relative velocity of the fila-
ment and the fluid is the source of the tension itself. If
we assume a solution to (7) of the form hð�; TÞ ¼
expð!TÞFð�Þ, with boundary conditions F��ð��=2Þ ¼
F3�ð��=2Þ ¼ 0, then we have an eigenvalue problem for

the relaxation time �1=! nearly identical to (3). The

scaling of ! with the mode number indicates that the
slowest relaxation time of the system will be 	1 �
�1=!1. Along with the equilibrium fluctuations discussed
above, we have also measured the temporal relaxation to
that variance, identifying a time 	 for�95% equilibration.
This would correspond to three exponential relaxation
times, and a comparison between 3	1 and the data is shown
in Fig. 2(c), by using the fitted value of ‘p determined in

equilibrium. Taken together, these equilibrium and dy-
namical results indicate the validity of a one-mode dynami-
cal system description of these semiflexible filaments
under tension.
In the compressional regime �< 0, the tension induces

a stretch-coil transition beyond a critical value ��, corre-
sponding to the eigenvalue ! ¼ 0, where the thrusting
force from tension�� _�L2= lnð1=�2eÞ balances the restor-
ing force �A=L2 from the filament bending stiffness. This
instability bears the same relation to Euler buckling (with
uniform end thrust) as the twirling-to-whirling transition
[25] of an elastic filament rotated at one end (with spatially
varying twist) does to the writhing instability of a filament
under uniform twist [26]. Observed filament shapes for
various values of � are shown in Figs. 3(a)–3(c), illustrat-
ing that as the buckling amplitude initially grows the mean
filament orientation 
 rotates toward the extensional direc-
tion, and the deformation subsequently relaxes as the (now
positive) tension extends the filament. A convenient mea-
sure of the extent of buckling is the minimum filament end-
to-end distanceL during this process, made dimensionless
as the order parameter P ¼ 1�L=L. Stochastic reorien-
tation of the filament during buckling sometimes moves its
ends out of the focal plane, leading to a noise floor Pnoise ’
0:15. Figure 3(d) shows the variation with j�j of P during
buckling events compared to the theoretical bifurcation
point j�j� ¼ 0:3932 obtained numerically from Eq. (7).
While the transition is strongly rounded by thermal fluctu-
ations, the threshold is quite consistent with the analytical
prediction. The buckling eigenfunction shown in Fig. 3(d)
has a shape strikingly close to that of the first biharmonic

FIG. 2 (color online). Filament modes, fluctuations, and dynamics in the extensional regime _� > 0. (a) The first four orthonormal
eigenfunctions WðnÞ (solid lines) obtained from (3) for � ¼ 0, and Wð1Þ for � ¼ 100 (red dashed line), illustrating the insensitivity of
the fundamental bending mode shape to the tension. (b) Experimentally measured local variance as a function of position along actin
filaments (symbols), and theoretical contribution from the fundamental mode (solid red line). (c) Filament-end fluctuation variance
[raw data (open circles) and binned (red circles)] and scaled full relaxation time [raw data (open squares) and binned (green squares)]
as a function of tension. Theoretical results are solid red and green curves, respectively.
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eigenfunction Wð1Þ. Subsequent instabilities of higher
modes occur at ��

2 ¼ �1:9876 and ��
3 ¼ �4:955. At the

large value � ¼ �47 in Fig. 3(c), the shape is a superpo-
sition of modes 3 and 4.

We have quantified the fluctuations, dynamics, and
buckling of single actin filaments under flow-induced ten-
sion and thereby established that strain rates _� in the range
0:1–1 s�1 are sufficient to induce buckling of filaments
with L� ‘p. Intriguingly, these are of the same order as

found in cytoplasmic streaming in large eukaryotic cells,
particularly those of plants [6,27]. This raises the possibil-
ity that significant filament rearrangements can occur
through the action of streaming. A quantitative treatment
of the finite-temperature rounding of the stretch-coil tran-
sition, along the lines of approaches to the Euler buckling
problem [17] or more general stochastic supercritical bi-
furcations [28], and a low-dimensional description of the
coupled rotation and deformation of filaments will be
discussed elsewhere. Generalization of these issues to
concentrated suspensions of flexible filaments is a chal-
lenging open problem.
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