PRL 108, 037401 (2012)

PHYSICAL REVIEW LETTERS

week ending
20 JANUARY 2012

Mesoscopic Self-Collimation and Slow Light in All-Positive Index Layered Photonic Crystals
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We demonstrate a mesoscopic self-collimation effect in photonic crystal superlattices consisting of a
periodic set of all-positive index 2D photonic crystal and homogeneous layers. We develop an electromag-
netic theory showing that diffraction-free beams are observed when the curvature of the optical dispersion
relation is properly compensated for. This approach allows us to combine slow-light regime together with
self-collimation in photonic crystal superlattices presenting an extremely low filling ratio in air.
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Electrodynamic theory in negative-index materials,
originally introduced by V.G. Veselago in 1968 [1], has
known impressive progress since the advent of metamate-
rials and photonic crystals [2]. Both approaches enable an
invaluable light control that originates for the former from
the realization of effective electric and magnetic permit-
tivities and for the latter from versatile photonic dispersion
relations. Many concepts developed for metamaterials in
linear and nonlinear regimes have been transposed to PhCs
devices since they enable the design of devices working in
the visible range of frequency [3—5]. The frontier between
PhCs and metamaterials has become fuzzier with recent
emergence of Bragg mirrors including negative-index ma-
terials. These composite one-dimensional PhCs, alternat-
ing positive- and negative-index layers, have, in particular,
shown an intriguing photonic band gap when around a
particular frequency, the average refractive index over
one lattice period is null [6-11]. This forbidden range of
frequency named zero-ii gap is, for example, insensitive to
the thickness of the lattice period or disorder [12] and
electromagnetic signals can be tunneled without any
phase delay because of a phase compensation mechanism
[13]. Resonant modes lying in the zero-7i gap can further-
more appear without breaking the lattice symmetry when a
Fabry-Perot optical condition is satisfied [6]. Surprisingly,
it has been demonstrated that zero-average index metama-
terials supporting these resonant modes can either propel
self-collimated beams or focalize optical signals [14].
These properties have been explained by introducing a
harmonic average index parameter that takes null or nega-
tive values while the average index is kept to zero.
However, this approach may be difficult to implement
experimentally since an accurate control of the metamate-
rial optical dispersion is required [14,15]. This drawback is
circumvented in an alternative device proposed by V.
Mocella and co-authors which consists of a periodic stack
of 2D photonic crystals (PhCs) and air-layers of equal
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thicknesses [16]. The PhC slabs were designed to behave
as flat lenses of —1 effective index originating from an
isotropic dispersion relation obtained with the second pho-
tonic band. In that case, self-collimation can be interpreted
as successive focusing of the beam by a lensing effect.
Experimental data also reveal that subwavelength beams
can efficiently be relayed over millimeter-scale distance
thanks to a smart optimization of the PhC interfaces. This
quasiperfect impedance matching prevents however the
opening of a large zero-n gap so that self-collimation
was observed close to the band gap edge.

Nevertheless, to date, this beam shaping mechanisms is
restricted to photonic devices realizing a quasi-zero-
average index condition by the use of negative-index ma-
terials and this is achieved in structures with high filling
factor in air (of 76%) [16]. In this Letter, we demonstrate
that mesoscopic self-collimation also arises in photonic
crystal superlattices of all-positive index materials and
when the zero-average index condition does not hold.
Diffraction-free beams are demonstrated when the curva-
tures of the photonic dispersion curves of the successive
media are offset. We propose an electromagnetic theory
that enables the design of Bragg media of extremely low
filling factor in air or presenting slow self-collimated light.
Let us start with an infinite 2D PhC consisting of a square
lattice of air holes (lattice constant a, radius r/a = 0.2)
etched in a dielectric medium of optical index 2.9. This 2D
PhC has an air filling factor of around 12%. The first
photonic band, computed with the plane wave expansion
method [17], shows flat isofrequency curves (IFCs) of
quasi null curvature around the reduce frequency a/A =
0.235, Fig. 1. At this frequency, all the waves constituting
a beam propagate with parallel group velocities (vy =
grad, w(k)) pointing in the I'M direction revealing the
self-collimation effect [18]. At lower frequencies (red
area in Fig. 1), the IFCs have a positive curvature leading
to a diverging beam, as in an homogeneous medium.
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FIG. 1 (color online). Isofrequency curves of the first band for
TE polarization (magnetic field parallel to the air hole axis).
The arrows indicate the direction of v, and the red and blue
areas correspond, respectively, to IFCs of positive and negative
curvatures.

Conversely, for higher frequencies, the negative curvature
results in beam focusing. Note that in this regime, negative
refraction is not linked to a negative phase index related to
opposite phase and group velocities since here k.vy >0
for all Bloch waves [19]. These remarks show the crucial
role of the local curvature of the IFCs for beam shaping
operations [20].

Suppose now a PhC superlattice consisting of a periodic
set of the previous 2D PhC sized in slabs of thickness d;
and of homogeneous layers of thickness d, and refraction
index n, = 2.9. The I'M direction of the 2D PhC is chosen
parallel to the direction of the PhC superlattice stack.
Mesoscopic self-collimation should appear when the posi-
tive and negative curvatures of the dispersion relations of
the homogeneous and the PhC layers are exactly balanced.
At the scale of the Bragg crystal macro-period, D =
d, + d,, the resulting average curvature should vanishes
provided that appropriate layers thicknesses are chosen.
This concept is developed in the framework of a beam
propagation model. Consider a Gaussian beam of initial
waist W, launched in a PhC superlattice presenting a ratio
in PhC layers a = d,/d,. After a unit cell distance D, the
beam is derived by the inverse Fourier transform of the
product of the initial Gaussian beam envelop U'(k,) =
W,/ (2/m) exp( — (k,W,/2)?) by the phase propagators
of each medium:

U(x, D) = TF_I{Ui(kx)PPhC(kx! dl)Phom(kx’ dZ)} (1)

where the general expression of the phase propagator in a
medium of dispersion relation k(k,) is P(k,,y) =
explik,(k,)y]. In high symmetry directions (such as in
I'M direction), the parity of the IFCs imposes a null first
derivative dk,/dk,. Consequently, the Taylor expansion of
the wave vector k, can be written as

1
ky(kx) = ky(k)(o) - (kx - kx())zﬁ . (2)

The right-hand term is linked to the local curvature of the
IFC by 1/k = —(9%k,/9k?)|;,. For the sake of simplicity
the reciprocal basis is chosen as k,, = 0 in I'M direction
and we define k,, = k,(k,). In that case, for the homoge-
neous slab, the curvature is related to the refraction index
by 1/kpom = 1/(kon,) (ko being the wave number in vac-
uum). Similarly, let us introduce for 2D PhC structures the
dimensionless parameter n, named curvature index which
is proportional to the curvature radius of the IFCs: n, =
kpnc/ko. As depicted in Fig. 2(a), 1/n, vanishes at the self-
collimation frequency a/A = 0.235 and takes positive or
negative values at lower or higher frequencies, respec-
tively. The expansion of Eq. (2) (assimilated to the paraxial
assumption) allows one to express the phase propagator
over one unit cell:

Peai(ls D) = exp| iD( (ko) - 2k—];(ni>)] 3)

which is simply the product Py, Ppyc. This phase propa-
gator involves the average phase (k) and the harmonic

0,5
(b)
0
—05
1/n.
_1-
5]
d2/2
0233 0236 00239 0242 0,245
a/\

FIG. 2. Curvature function 1/n,. computed in the I'M direction
versus the reduce frequency. (a) For the infinite 2D PhC de-
scribed in Fig. 1 and of unit cell depicted in the inset. The
intersection points between 1/n. and the straight dashed lines for
a =0, 1, and 3 correspond, respectively, to the self-collimation
frequencies for the unbounded 2D PhC and for PhC superlattices
of two filling ratios in PhC layers. (b) Graph of 1/n, computed
for the supercell corresponding to a PhC superlattice with & = 1
and d| = 3a+/2 shown in the inset. Mesoscopic self-collimation
arises for a/A = 0.239, where 1/n, vanishes.
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average curvature index given by (ni> = % Ik nd(ll). Using

Eq. (1) and (3) one can find an analytical expression of the
beam inside the Bragg media. The waist of the Gaussian
beam after one macroperiod D depends, in particular, on
the average curvature:

v =GOy

where 6, = A/(7W,) is the divergence angle [21]. This
result demonstrates that the initial beam waist is recovered
after propagating through one Bragg period, W(D) = W,,
when the average curvature is zero:

d d

1 4+2=o (5)

n. ny

Note that here mesoscopic self-collimation is based on the
exact balance of the local IFC curvatures of each layers and
does not require a zero-ii gap to be opened that implies
(kyo) = 0 [6,14]. The beam propagation model in PhC
superlattices provides a simple method to determine the
self-collimation frequency from the 2D infinite PhC dis-
persion properties. The working frequency is indeed fixed
by the intersection point of the local curvature 1/n, with
the straight line —a/n, deduced from Eq. (5), Fig. 2. For
ratios in PhCs layers o = 1 and o = 3, mesoscopic self-
collimation should, respectively, be obtained at the reduced
frequencies a/A = 0.241 and a/A = 0.244, Fig. 2(a). The
operating frequency is indeed blueshifted when increasing
a because the PhC layers must focus more strongly to
cancel diffraction in thick homogeneous slabs. It is also
worth noting that these frequencies are invariant with
respect to the macroperiod D provided that Eq. (5) is
satisfied. This invariant scaling property has been checked
by calculating the photonic band diagrams of PhC super-
lattices with the plane wave expansion method. Flat IFCs
are found for a constant « and for several d; varying from
a2 to 4a\2 (by step of a+/2). For example, it is seen in
Fig. 2(b) that for d; = 3a+/2 and a = 1, the curve 1/n,
vanishes at a/A = 0.239 in agreement with the beam
propagation model. The weak difference (smaller than
1%) between this operating frequency and the prediction
of the propagation beam model shows that our model is
thus accurate enough to guide designing and fabrication of
self-collimated PhC structures. To corroborate these re-
sults, the propagation of an incident beam has been per-
formed with 2D FDTD simulations through PhC
superlattices presenting two filling ratios « [22]. We found
a self-collimated beam over a length of 400a at the reduce
frequencies 0.239 and 0.243 for & = 1 and 3, respectively,
Fig. 3. Theses results demonstrate that mesoscopic self-
collimation is achieved in layered structures of extremely
low filling factor in air. The air filling factor given by f =
m(r/a)*/(1 + ) in the superlattices of Figs. 3(a) and 3(b)
is, respectively, divided by 2 and 4 with respect to the
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FIG. 3 (color online). Map of the magnetic field modulus for a
Gaussian beam of waist W, = 8a (a) At the reduce frequency
a/A = 0.239 for a PhC superlattice for d, = 4a\/§ and o = 1.
(b) At the reduce frequency 0.243 for d; = 3a+/2 and a = 3.
(c) The same Gaussian beam propagating in a homogeneous
medium of optical index n, = 2.9 and for a/A = 0.239.

initial unbounded 2D PhC. Compared to the bulk semicon-
ductor case where the beam waist attains 3 times W after
the same distance 400a [Fig. 3(c)], the beam keeps the
same initial waist for the PhC superlattice presenting an air
filling ratio of only 3% [Fig. 3(b)]. This value could
furthermore be decreased by considering 2D PhC layers
of lower curvature index. The selectivity of PhC super-
lattices can be evaluated by computing the range of fre-
quency supporting the self-collimation effect in the same
way than in [20]. Here, in the framework of the beam
propagation model, it is related to the derivative of the
waist versus the reduce frequency which is derived for a
large propagation distance D from Eq. (4): dW/d(a/A) =
0od,0(1/n,)/d(a/A). The selectivity is then driven by the
slope of the curvature 1/n. of the infinite PhC and it
increases with higher values of a/A; see Fig. 2(a). For
example, the self-collimation bandwidth is 2 times smaller
for @ = 1 compared to the infinite PhC case. Conversely to
the approach proposed in [20], the self-collimation band-
width is reduced for PhC superlattices working with the
first photonic band. This conclusion may, however, be
reconsidered for others photonic dispersion relations.
Besides of these linear properties, these PhC superlatti-
ces present also attractive properties for nonlinear applica-
tions such as laser emission or frequency conversion.
Nonlinear optical processes developed for Bragg mirrors
can be revisited owing to the original optical properties of
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PhC superlattices. First, the latter enables to guide self-
collimated beam in devices presenting a strong amount of
nonetched semiconductor material. Indeed, as compared to
structures reported to date [16], the air filling factor is
reduced by a factor 25 resulting in a potentially 97% of
optically active or nonlinear semiconductor. Moreover, as
seen in Fig. 3(b), the PhC superlattice of low ratio in PhC
layers behaves like a set of coupled cavities where a strong
electromagnetic field localizes. Second, light-matter inter-
action is also enhanced when light is slowed down at
frequencies close to a photonic band gap (PBG) edge
[23]. In lasers, the optical gain increases linearly with the
group index, n ¢ = c/ v, and the efficiencies of second or
third harmonic generation nonlinear processes are en-
hanced as né. Unfortunately, self-collimation in 2D or
3D PhCs arises far away from the PBG edge preventing
thus to work in a slow-light regime. In our case, the infinite
square lattice of air holes presents a complete PBG be-
tween the first and the second bands spanning the fre-
quency range 0.247-0251. Self-collimation arising at the
reduce frequency 0.235 is associated to Bloch modes of
around 2.96 group index which is almost the refraction
index of the host material. To increase this low group index
one can play with the additional degree of freedoms pro-
vided by PhC superlattices. Since these layered media are
basically Bragg mirror structures, we can open an addi-
tional PBG at the vicinity of the mesoscopic self-
collimation frequency by an appropriate choice of the
macroperiod D and the parameter «. For example, the
band diagram computed in the I'M direction, for @ = 1
and d, = 4a+/2 corresponding the structure of Fig. 3(a),
reveals that a new PBG centered at a/A = 0.237 and
originating from Bragg scattering opens, Fig. 4(a). With
these parameters, the self-collimation frequency, a/A =
0.239, appears now at the band gap edge located at the
reduce frequency 0.2385. A high group index of around 50
is observed for a PhC superlattice of 6% air filling factor
that combines both slow light and the self-collimation
effects, Fig. 4(b).

In summary, a theory of photonic dispersion curvature
compensation has been presented to predict self-
collimation of light in PhC superlattices. The beam propa-
gation model is shown to be relevant for the conception of
PhC superlattices and gives an insight on the optical
mechanism behind the mesoscopic self-collimation effect.
This theory reveals that negative-index materials are not
necessary to generate diffraction-free beams leading thus
to a general approach for the design of Bragg mirrors based
on 2D photonic crystals properties. Mesoscopic self-
collimation is demonstrated in PhC superlattices present-
ing 97% of nonetched semiconductor. Slow self-collimated
light is in addition showed in appropriately designed PhC
superlattices that work at a frequency located at the edge of
an additional photonic band gap. In our opinion, these
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FIG. 4 (color online). (a) Band diagram in the I'M direction of
the PhC superlattice for « = 1 and d; = 4a\2 depicted in the
inset. The red circles indicate the location of the self-collimation
frequency 0.239. (b) Group index versus the reduce frequency.

novel properties open attractive avenues for the design of
active or nonlinear devices presenting beam shaping
functionalities.
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