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Generic conditions are established for producing a non-Fraunhofer response of the critical supercurrent

subject to an external magnetic field in ferromagnetic Josephson junctions. Employing the quasiclassical

Keldysh-Usadel method, we demonstrate theoretically that an inhomogeneity in the magnitude of the

energy scales in the system, including Thouless energy, exchange field and temperature gradient normal to

the transport direction, influences drastically the standard Fraunhofer pattern. The exotic non-Fraunhofer

response, similar to that observed in recent experiments, is described in terms of an intricate interplay

between multiple ‘‘0-�’’ states and is related to the appearance of proximity vortices.
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The well-known Fraunhofer diffraction pattern of the
critical Josephson current has been extensively studied
in superconductor/normal-metal/superconductor (S/N/S)
junctions [1,2]. The interest in how a supercurrent responds
to an applied magnetic flux derives from the fact that this
property is the key element in ultrasensitive devices such as
superconducting quantum interference devices (SQUID)
[3–5]. Whereas S/N/S junctions are known to display
Fraunhofer diffraction in the wide junction limit, the criti-
cal current decays monotonically as a function of the
applied flux in the narrow junction limit. The crossover
between these two distinct types of behavior was theoreti-
cally described in terms of proximity vortices in the normal
wire [6].

More recently, the orbital response of the supercurrent in
magnetic Josephson junctions has attracted much interest
[3,4]. When the normal-metal interlayer is exchanged with
a ferromagnet, thus forming an S/F/S junction, a new
mechanism comes into play compared to the S/N/S case.
The ground-state phase difference between the supercon-
ducting reservoirs may then take the value of 0 or �,
depending on parameters such as temperature and ferro-
magnetic barrier thickness [7]. Not only does this cause the
supercurrent in magnetic Josephson junctions to decay in a
nonmonotonic fashion, but it was recently reported that
non-Fraunhofer interference patterns appear in S/F/S junc-
tions composed of alternating 0 and � states [3,4].
Whereas the supercurrent is maximal at zero flux in the
nonmagnetic case, the supercurrent instead displayed a
minimum at zero flux in the S/F/S case [4]. These experi-
mental findings have motivated theoretical investigations
[5,8]. Non-Fraunhofer interference patterns have also been
studied in S/I/S junctions with arrays of resistors [9].

Motivated by this, the following question is answered in
this Letter: under which general conditions may the critical
supercurrent respond to an external magnetic field in an
anomalous fashion, producing a non-Fraunhofer interfer-
ence pattern? We establish these conditions and, moreover,

explain the origin of this exotic phenomenon. To do so, we
solve the quasiclassical Keldysh-Usadel equations. In the
majority of past works, the investigation of the non-
Fraunhofer patterns were restricted to incorporating a lin-
ear ansatz for the behavior of the superconducting U(1)
phase [3,4]. In contrast, we have employed in this Letter a
model of a ferromagnetic Josephson junction which takes
into account an external magnetic field with an arbitrary
dependence on the coordinates and direction of the field.
This model allows us to study the critical supercurrent
through an inhomogeneous junction without recourse to
any ansatz. The possibility of having an arbitrary inhomo-
geneous magnetization texture in the F region makes the
model highly general. The results of the developed theory
are qualitatively in agreement with the recent experimen-
tally observed non-Fraunhofer patterns. Remarkably, we
find that the critical Josephson current through the F region
is suppressed at zero-external magnetic field within the
wide junction limit when the magnitude of any of the
energy scales of the system, i.e., Thouless energy, ex-
change field, and temperature are inhomogeneous normal
to the transport direction. Crucially, to achieve a non-
Fraunhofer response, the inhomogeneity must include at
least one 0-� state. In this case, the second peak of mag-
netic interference pattern of critical supercurrent becomes
larger than the first, in contrast to the Fraunhofer pattern.
We explain this behavior in terms of 0-� crossover states
and also relate our results to the appearance of proximity
vortices inside the F region.
Consider the schematic of the proposed experimental

setup in Fig. 1. The inherent Josephson penetration depth
�J is assumed to be larger than the width of junction, such
that one may avoid screening effects imposed by the
Josephson current on the external magnetic field. This field
is assumed to be directed along the z direction. We work
with a vector potential satisfying the Lorentz gauge, i.e.,
~r �A ¼ 0 and choose specifically A ¼ �Hyx̂ in which H
represents the strength of external magnetic field. The
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magnetic flux due to the intrinsic magnetization of the
ferromagnetic region is ignored, as is known to be a good
approximation in most cases [4]. To investigate the trans-
port properties of this system, the quasiclassical theory of
superconductivity in the diffusive regime is employed, so
that the Gor’kov equations are reduced to the Usadel
equations [10]. The Usadel equation inside the F region
together with appropriate boundary conditions is used for
obtaining observable quantities of the system. In the pres-
ence of a static external magnetic field, the Usadel equation
is succinctly given by

D½@̂; �gðx;y;zÞ½@̂; �gðx;y;zÞ��þ i½"�̂3

þdiag½hðx;y;zÞ ��;ðhðx;y;zÞ ��Þ��; �gðx;y;zÞ�¼0;
(1)

where hðx; y; zÞ stands for exchange energy, �g is the full
8� 8 Green’s function matrix, while �̂3 and � are 4� 4
and 2� 2 Pauli matrixes, respectively [11]. Here D is the

diffusion constant and @̂ � ~r 1̂�ieAðx; y; zÞ�̂3. Within
the weak proximity regime, one can expand the Green

function around the bulk solution ĝ0, i.e., ĝðx; y; zÞ ’ ĝ0 þ
f̂ðx; y; zÞ, where ĝ0 ¼ diagð1;�1Þ [12]. Therefore, the re-
tarded component of Green’s function reads

ĝ Rðx; y; zÞ � 1 fRðx; y; zÞ
�~fRðx; y; zÞ �1

 !
: (2)

The advanced and Keldysh blocks are also given
via ĝAðx; y; zÞ ¼ �ð�̂3ĝ

Rðx; y; zÞ�̂3Þy and ĝKðx; y; zÞ ¼
ðĝRðx; y; zÞ � ĝAðx; y; zÞÞ tanhð"=2kBTÞ under equilibrium
conditions. At the two N/S interfaces the Kupriyanov-
Lukichev boundary conditions [13] are compactly

written by 2�ĝ½ð ~r� ieA�̂3Þ � n̂; ĝ�¼ ½ĝBCSð�Þ; ĝ�, the ratio

between the resistance of the barrier region and the resist-
ance in the F film is defined as � ¼ RB=RF, ĝBCSð�Þ is the
Green’s function in the two superconductor reservoirs [14]
and n̂ is a unit vector normal to the interface [12]. At the
vacuum borders, the Green’s function satisfies @yĝ ¼ 0.

The Usadel equations in their present form constitute a
set of complicated coupled differential equations which we
have solved numerically by using a collocation method.
Thus, the approximate solution components are assumed to
be linear combinations of bicubic (tricubic, for three-
dimensional problems) Hermite basis functions, and re-
quired to satisfy the Usadel equation exactly at 4 (8, for
three-dimensional problems) collocation points in each
subrectangle of a grid, and to satisfy the boundary con-
ditions exactly at certain boundary collocation points [15].
Finally, Newton’s method is used to solve the (nonlinear,
generally) algebraic equations resulting from the colloca-
tion method formulation [17]. In order to study transport
properties of the inhomogeneous junction, the current

density through the junction is considered: Jð ~R;�Þ ¼
J0
R
d"Trf�3ð �g½@̂; �g�ÞKg, here J0 ¼ N0eD=4 and N0 is

the number of states in the Fermi surface. Performing an
integration over the y coordinate provides the total

supercurrent flowing through the junction, Ið�Þ ¼
I0
RR
dyd"Trf�3ð �g½@̂; �g�ÞKg. To understand the magnetic

interference patterns of such junctions, we also investigate
the spatial variation of pair potential inside the F region
calculated via: U ¼ U0Trfð�̂1 � i�̂2Þ

R
d"�̂3 �g

Kg, where

U0 ¼ �N0�=16 [11]. The temperature, width, and lower
base of the wedged junction are fixed at T=Tc ¼ 0:01,
W=�S ¼ 10 and d=�S ¼ 2, respectively (the so-called
wide junction limit). The proximity controlling parameter
� is also fixed at 5, ensuring that we operate in the
weak proximity regime. Energy units are used so that
@ ¼ kB ¼ 1.
The results for the critical Josephson current through the

inhomogeneous S/F/S junction as a function of normalized
external magnetic flux, i.e., �=�0 are presented in Fig. 2.
In Fig. 2(a), the magnitude of the Thouless energy is
inhomogeneous in the y direction: the F region has a
wedged shape [see Fig. 1(a)]. In Fig. 2(b), the magnitude
of magnetic exchange interaction is inhomogeneous in the
y directions and follows a h ¼ hð0; 0; y=WÞ pattern. The
normalized critical current Ic=I0 exhibits a suppression at
zero external flux for some values of the wedge angle 	. In
the case of trapezoidal junction, the second peak in the
interference pattern takes a larger value than the first for an
interval of 	 values. Typically, this behavior is enhanced at
	 ¼ �=43 and then disappears for larger values 	> �=20
[see inset panel of Fig. 2(a)]. A similar magnetic interfer-
ence pattern is generated when the magnitude of exchange
field is inhomogeneous, as shown in Fig. 2(b). In this case,
the non-Fraunhofer pattern phenomenon is pronounced for,
e.g., h ¼ 4:27�. The results show qualitatively good con-
sistency with recently reported non-Fraunhofer patterns for

FIG. 1 (color online). Experimental setup of the inhomogene-
ous ferromagnetic Josephson junction. The arrow inside the F
layer shows the direction of the inhomogeneity in magnitude of
either the Thouless energy, magnetic exchange field, or tempera-
ture normal to transport direction (x direction). To model an
inhomogeneity in the Thouless energy, the setup (a) is consid-
ered in this Letter. Although making the setup (b) might be easier
to achieve technically, the two setups generate the same results
in the diffusive limit. An inhomogeneity in the magnetic ex-
change field is modeled by h ¼ hð0; 0; y=WÞ. The external field
is applied to the system in the z direction (not shown).

PRL 108, 037001 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

20 JANUARY 2012

037001-2



‘‘0� �’’-stacks in Ref. [4]. For reasons to be described
below, we expect that the same non-Fraunhofer magnetic
pattern would arise when the temperature of the system
along the y direction is variable and has an inhomogeneous
form. We have also investigated (not shown) other magne-
tization textures such as domain-wall, Skyrmion and spiral
(with helical axis normal to transport direction), and found
that they generate the standard Fraunhofer patterns because
of the constant magnitude of the magnetic exchange field,
jhj ¼ h.

In comparison, the behavior of critical Josephson
current through a S/N/S wedged junction is investigated
in Fig. 2(c). For 	 ¼ 0, we recover the results of Ref. [6].
By increasing	, the normalized supercurrent undergoes an
overall reduction, because the effective junction length
increases due to the inhomogeneity in the magnitude of
Thouless energy. Unlike the inhomogeneous S/F/S case
above, however, the first peak in the diffraction pattern is
larger than others for all values of 	, exhibiting the stan-
dard Fraunhofer pattern. Therefore, the exotic non-
Fraunhofer pattern only can be observed in ferromagnetic
junctions under the conditions discussed above.

To further understand the outstanding difference be-
tween interference patterns of the homogeneous and inho-
mogeneous ferromagnetic junctions, we consider how
the presence of an external magnetic field influences both
the 0-� transition profile of the S/F/S junction and the
proximity vortices pattern in the F region. The origin of
the suppressed central peak in the S/F/S wedged Josephson
junction (	 � 0) is mainly studied in this Letter,
and we argue why this mechanism accounts for the

non-Fraunhofer pattern in other cases where there is a
magnitude gradient of the exchange field and/or tempera-
ture along the direction normal to the transport direction so
that it includes at least one 0-� state. To this end, we will
later investigate the current density spatial map of mag-
netic junctions and compare 	 ¼ 0 with 	 � 0. Figure 3
reveals an illustrative profile of the normal and ferromag-
netic Josephson junctions. Figure 3(a) illustrates a spatial
map of pair potential in the normal region of the S/N/S
junction where 	 ¼ 0 and �=43 for the left and right
panels, respectively. The upper base of the trapezoidal
region is fixed at d ¼ 2�S while for 	 ¼ �=43 the lower
base takes the value L ¼ 3:463�S. The increment of 	
deforms the proximity vortex pattern compared to the
pattern of the rectangular junction. The distance between
two neighboring vortices is no longer equal to �0H=d in
contrast to that of rectangular junction within the wide
junction regime (left panel). The spatial maps of the pair
potential are given for� ¼ 4�0 and zero superconducting
phase difference, i.e., � ¼ 0. Now, the increment of 	
removes the proximity vortices inside the normal segment
of the junction gradually. The variation of superconducting
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FIG. 2 (color online). Normalized supercurrent through an
inhomogeneous Josephson junction vs normalized external mag-
netic flux �=�0 perpendicular to the junction. (a) An S/F/S
junction where the F region has a wedged shape with inclination
angle 	 and exchange field h ¼ 10�0. The inset panel zooms in
on the interference pattern at small and large values of � and 	,
respectively. (b) The F region is now geometrically rectangular,
but the magnitude of exchange field is now inhomogeneous
according to the texture h ¼ hð0; 0; y=WÞ. (c) An S/N/S junction
where the N region has a wedged shape with inclination angle 	.
The legends are the same as in (a). In all cases, the height of the
trapezoidal region is fixed atW ¼ 10�S while the upper base d is
equal to 2�S (see Fig. 1). Therefore, 	 ¼ 0 makes a rectangular
junction (L ¼ d ¼ 2�S) and �=130 (L ¼ 2:483�S), �=67 (L ¼
2:938�S), �=43 (L ¼ 3:463�S), and �=20 (L ¼ 5:168�S) make
wedged junctions.

FIG. 3 (color online). (a) Normalized spatial map of the pair
potential for a S/N/S junction where 	 ¼ 0, �=43 (L ¼
3:463�S) in the left and right frames, respectively. (b) The
normalized pair potential in a S/F/S junction. Arrows indicate
the location of proximity vortices. The zoom-in frame of a S/F/S
trapezoidal junction with 	 ¼ �=43 is shown using a different
color map. The magnetic flux through the N or F region is
assumed to be � ¼ 4�0 and no superconducting phase
difference is applied (� ¼ 0). (c) The 0-� crossover profile of
a rectangular S/F/S junction where � ¼ 0, 3�0=2, and W ¼
10�S vs normalized junction length d=�S. (d) Current density
spatial map of the magnetic Josephson junction in the absence of
external magnetic field, � ¼ 0. Top and bottom frames exhibit
current density flowing through the junction where 	 ¼ 0, �=43,
respectively (	 ¼ �=43 constitutes a ‘‘0-�’’ junction). Arrows
indicate current directions.
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phase difference �, however, moves the vortices along the
y direction in both the normal and ferromagnetic junctions
[6]. Figure 3(b) exhibits the equivalent investigation for a
ferromagnetic Josephson junction. In the rectangular case,
the pair potential shows the same behavior as the vortex
pattern as S/N/S case. In contrast, the vortex pattern is
highly deformed in the wedged ferromagnetic junction. A
zoom-in is shown for the middle of F wire with 	 ¼ �=43
using different color map. The strong deformation may be
understood by noting that the increment of 	 effectively
synthesizes multiple ‘‘0-�’’ states in the same junction and
also from the pair breaking of the exchange field. When 	
becomes nonzero, the junction may be thought of as a
superposition of multiple 0 and � junctions.

To understand this quantitatively, Figs. 3(c) and 3(d)
should be considered together. Figure 3(c) illustrates the
0-� crossover profile where 	 ¼ 0 for two different values
of external flux � ¼ 0, 3�0=2 as a function of F-layer
length d=�S. The first and second transitions occur at
d ¼ 2:38�S and 3:46�S, respectively. It is important to
note that the latter length is identical to the lower base of
the trapezoidal junction when 	 ¼ �=43. The plot also
shows that applying an external magnetic field reduces the
magnitude of the current nonlinearly, although the loca-
tions of 0-� points are left unchanged. The anomalous
Fraunhofer diffraction pattern of the critical supercurrent
can now be well understood by noting Fig. 3(d). Increasing
the junction angle 	 renders more parts of the junction to
have opposite supercurrent flow direction which then
partially cancel each other. One should note that in the
trapezoidal region, the amplitude of critical current is
nonuniform. More � parts, therefore, are needed to cancel
the 0 parts of the junction that occur for the top region with
smallest effective length L. A key observation is that the
above results suggest a venue for producing an anomalous
non-Fraunhofer interference pattern resulting without nec-
essarily distorting the geometry of the system, in effect
allowing for anomalous interference even in standard rect-
angular junctions.

In conclusion, we have proposed experimentally acces-
sible generic conditions for achieving non-Fraunhofer in-
terference patterns of the critical supercurrent as a function
of external magnetic flux. The key property is the control-
lable numbers of gradual 0-� states in the same junction by
incorporating an inhomogeneity in the magnitude of en-
ergy scales of system, i.e., Thouless energy, exchange field,
and/or temperature normal to the transport direction. We
examine the proposed generic conditions for some limiting
cases and find good qualitative consistency with the re-
cently observed non-Fraunhofer magnetic interference pat-
terns in 0-� stacks.
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