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We present a time-reversal invariant s-wave superconductor supporting Majorana edge modes. The

multiband character of the model together with spin-orbit coupling are key to realizing such a topological

superconductor. We characterize the topological phase diagram by using a partial Chern number sum, and

show that the latter is physically related to the parity of the fermion number of the time-reversal invariant

modes. By taking the self-consistency constraint on the s-wave pairing gap into account, we also establish

the possibility of a direct topological superconductor-to-topological insulator quantum phase transition.
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Since Majorana suggested the possibility for a fermion
to coincide with its own antiparticle back in 1937 [1], the
search for the Majorana particle has catalyzed intense
effort across particle and condensed-matter physics alike
[2]. Particles either constitute the building blocks of a
fundamental physical theory or may effectively emerge
as the result of the interactions of a theory. A Majorana
fermion is no exception to this principle, with neutrinos
potentially epitomizing the first view [3], and localized
quasiparticle excitations in matter illustrating the second
[4]. Remarkably, Majorana fermions can give rise to the
emergence of non-Abelian braiding [5]. Thus, in addition
to their significance for fundamental quantum physics,
interest in realizing and controlling Majorana fermions
has been fueled in recent years by the prospect of imple-
menting fault-tolerant topological quantum computation
[6,7]. As a result, a race is underway to conclusively detect
and characterize these elusive particles.

Avariety of condensed-matter systems hosting localized
Majorana elementary excitations have been proposed, no-
tably certain quantum Hall states [5] and so-called topo-
logical superconductors (TSs) [8,9]. Unfortunately, these
exotic states of matter require the explicit breaking of time-
reversal (TR) symmetry and their physical realization
seems to be at odds with existent materials. Such is the
case, for instance, of superconductors with px þ ipy spin-

triplet pairing symmetry. This has not prevented research-
ers to pursue creative proposals that rely on a combination
of carefully crafted materials and devices. Fu and Kane
[10], in particular, suggested the use of a (topologically
trivial) s-wave superconducting film on top of a three-
dimensional topological insulator (TI), which by proximity
effect transforms the nontrivial surface state of the TI into a
localized Majorana excitation [4,11] (see also [12] for
related early contributions). While experimental realiza-
tion of this idea awaits further progress in material science,
alternative routes are being actively sought, including
schemes based on metallic thin-film microstructures,
quantum nanowires, and semiconductor quantum wells

coupled to either a ferromagnetic insulator, or to a
magnetic field in materials with strong spin-orbit (SO)
coupling [13].
Our motivation in this work is to explore whether a path

to TSs exists based on conventional bulk s-wave spin-
singlet pairing superconductivity. We answer this question
by explicitly constructing a model which, to the best of our
knowledge, provides the first example of a 2D TS with
s-wave pairing symmetry, and supports Majorana edge
modes without breaking TR symmetry [14]. The key
physical insight is the multiband character of the model,
in the same spirit of two-gap superconductors [15], but
with the SO coupling playing a crucial role in turning a
topologically trivial two-gap superconductor into a non-
trivial one. Our results advance existing approaches in
several ways. First, multiband systems clearly expand the
catalog of TI and TS materials. Following the discovery of
s-wave two-band superconductivity in MgB2 in 2001, a
number of two-gap superconductors ranging from high-
temperature cuprates to heavy-fermion and iron-based
superconductors have already been characterized in the
laboratory [16], giving hope for a near-future material
implementation. Furthermore, from a theoretical stand-
point, our TR-invariant model also supports a direct
TI-to-TS (first-order) quantum phase transition (QPT),
allowing one to probe these novel topological phases and
their surface states by suitably tuning control parameters in
the same physical system.
Exact solution with periodic boundary conditions.—We

consider a TR-invariant two-band Hamiltonian of the form
H ¼ Hcd þHso þHsw þ H:c:, where

Hcd ¼ 1
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represent the two-band (c and d) dynamics, the SO inter-
action, and s-wave superconducting fluctuations, respec-
tively. In the above equations, � is the chemical potential,
ucd represents an onsite spin-independent ‘‘hybridization
term’’ between the two bands, fermionic creation operators
at lattice site j (unit vectors x̂, ŷ) and spin � ¼" , #
are specified as cyj;� or dyj;�, depending on the band, and

(�c, �d) denote the mean-field s-wave pairing gaps. By
letting c j � ðcj;"; cj;#; dj;"; dj;#ÞT , the Pauli matrices �� and

�� act on the orbital and spin part, respectively. Notice that
we have implicitly assumed that the intraband SO coupling
strengths obey �c ¼ ��d � �. In this way, in the limit
where � ¼ 0 ¼ �c ¼ �d, H reduces to a known model
for a TI [17].

For general parameter values and periodic boundary
conditions (PBC), H can be block-diagonalized by
Fourier transformation in both x and y. That is, we can

rewrite H ¼ 1
2

P
kðÂy

kĤkÂk � 4�Þ, with Ây
k ¼ ðcyk;"; cyk;#;

dyk;"; d
y
k;#; c�k;"; c�k;#; d�k;"; d�k;#Þ, and Ĥk an 8� 8 ma-

trix. An analytical solution exists in the limit where the

pairing gaps are �-shifted, �c ¼ ��d � �, since Ĥk

decouples into two 4� 4 matrices. By introducing new
canonical fermion operators, ak;� ¼ 1ffiffi

2
p ðck;� þ dk;�Þ,

bk;� ¼ 1ffiffi
2

p ðck;� � dk;�Þ, we may rewrite H ¼
1
2

P
kðB̂y

kĤ
0
kB̂k � 4�Þ, with B̂y

k ¼ ðayk;"; byk;#; a�k;"; b�k;#;
ay�k;#; b

y
�k;"; ak;#; bk;"Þ, and Ĥ0

k ¼ Ĥ0
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2;k, with Ĥ0
1;k,

Ĥ0
2;k being TR of one another, and
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 !
:

Here, �k¼�2�ðsinkx;sinkyÞ, mk ¼ ucd � 2tðcoskx þ
coskyÞ, and ~� � ð�x; �yÞ. The excitation spectrum ob-

tained from diagonalizing either Ĥ0
1;k or Ĥ0

2;k is

�n;k¼�
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where the order �1;k � �2;k � 0 � �3;k � �4;k is assumed

and �2 � �2 þ �2. QPTs occur when the gap closes
(�2;k ¼ 0, for general � � 0), leading to the critical lines

determined by mkc
¼ ��, where the critical modes kc 2

fð0; 0Þ; ð0; �Þ; ð�; 0Þ; ð�;�Þg. It is worth noticing that
through a suitable unitary transformation (see Eq. (4) of
Ref. [18]), the SO interaction in Eq. (1) is formally mapped
into px þ ipy and px � ipy intraband interaction, hinting

at the existence of nontrivial topological phases, as we
demonstrate next.

Topological response.—Since H preserves TR invari-
ance, bands which form TR-pairs have opposite bulk
Chern numbers (CNs) Cn, leading to

P
n2occupiedCn ¼ 0

(including both Ĥ0
1;k and Ĥ

0
2;k). Thus, introducing a newZ2

topological invariant is necessary in order to distinguish
between trivial and TS phases. In Ref. [19], the parity of

the sum of the positive CNs was considered, whereas in
Ref. [20] an integral of the Berry curvature over half the
Brillouin zone for all the occupied bands was used. Here,
we propose a different Z2 invariant which is guaranteed to
work in the presence of TR: taking advantage of the
decoupled structure between TR pairs, we use the CNs of

the two occupied negative bands of Ĥ0
1;k only (say, C1 and

C2) and define the following parity invariant:

PC � ð�1Þmod2ðCþÞ; Cþ � C1 þ C2: (3)

Let jc n;ki denote the band-n eigenvector of Ĥ0
1;k. Then the

required CNs Cn, n ¼ 1, 2, can be computed as [21]

Cn ¼ 1

�

Z �

��
dkx

Z �

��
dky Imh@kxc n;kj@kyc n;ki: (4)

The resulting topological phase structure is shown in Fig. 1
by treating the pairing gap� as a free control parameter. In
an actual physical system,� cannot be changed at will, but
only be found self-consistently by minimizing the free
energy (or ground-state energy at zero temperature).
While we shall return on this issue later, we first focus on
understanding the physical meaning of the above invariant
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FIG. 1 (color online). Topological characterization of the
phase structure of Hamiltonian H via the partial CN sum Cþ
as a function of ucd and �, with t ¼ 1 and arbitrary � � 0, for
representative chemical potentials � ¼ 0 (top) and � ¼ �1
(bottom). The black (dashed) line represents an insulator or
metal phase, depending on the filling, with � ¼ 0. CNs are
calculated for ðNx; NyÞ ¼ ð100; 100Þ lattice sites. Note that we

may have two pairs of edge modes with Cþ ¼ 0.
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and on establishing a bulk-boundary correspondence for
our model.

Interestingly, there is a direct connection between the
invariant PC and the fermion number parity of the TR-
invariant modes. Without loss of generality, let � ¼ 0, and
focus on the ground-state fermion number parity of the
four TR-invariant points in the first Brillouin zone, kc.

Since Ĥ0
1;k and Ĥ0

2;k are decoupled, we need only

concentrate on the ground-state parity property of

Ĥ0
1;k. Let us introduce the new basis:

faykc;"jvaci; b
y
kc;#jvaci; jvaci; a

y
kc;"b

y
kc;#jvacig. In this basis,

Ĥ0
1;k becomes ~H1;kc

¼ mkc
�z � ��x, with eigenvalues

�mkc
, ��, and an identical matrix for Ĥ0

2;kc
in the TR

basis f�aykc;#jvaci; bykc;"jvaci; jvaci;�aykc;#b
y
kc;"jvacig.

When jmkc
j> j�j, the ground state of each mode kc is

in the sector with odd fermion parity, Pkc
¼

ei�ða
y
kc;"akc;"þby

kc;#bkc;#Þ ¼ �1, otherwise it is in the sector
with even fermion parity, Pkc

¼ 1. By analyzing the rela-

tion between jmkc
j and j�j for each kc, we can see that the

TS (trivial) phases with PC ¼ �1ð1Þ correspond to the
ground state with

Q
kc
Pkc

� PF ¼ �1ð1Þ. Thus, our Z2

invariant coincides with the fermion number parity of the
four TR-invariant modes from one representative of each
Kramer’s pairs, consistent with the fact that only a partial
CN sum can detect TS phases in the presence of TR
symmetry. While the relation between nontrivial topologi-
cal signatures (such as the fractional Josephson effect) and
the local fermion parity of Majorana edge states has been
discussed in the literature [6,22,23], invoking the fermion
number parity of the TR-invariant modes in bulk periodic
systems to characterize TS phases has not, to the best of our
knowledge.

Open boundary conditions and edge states.—A hall-
mark of a TS is the presence of an odd number of pairs
of gapless helical edge states, satisfying Majorana fermion
statistics. Thus, in order to understand the relation between
PC (or PF) and the parity of the number of edge states,
i.e., a bulk-boundary correspondence, we study the
Hamiltonian H on a cylinder. That is, we retain PBC
only along x, and correspondingly obtain the excitation
spectrum, �n;kx , by applying a Fourier transformation in the

x-direction only. For simplicity, let us again focus on the
case � ¼ 0. The resulting excitation spectrum is depicted
in Fig. 2 for representative parameter choices. Specifically,
for odd PC [Cþ ¼ 1 in panel (a) and Cþ ¼ �1 in panel
(b), respectively], H supports one TR pair of helical edge
states on each boundary, corresponding to the Dirac points
kx ¼ 0 (a) and kx ¼ � (b). Different possibilities arise for
even PC. While Cþ ¼ 0 can clearly also indicate the
absence of edge states, in panel (c) one TR pair of helical
edge states exists on each boundary for both Dirac points
kx ¼ 0, � (for a total of two pairs, as also explicitly
indicated in Fig. 1). In panel (d) (Cþ ¼ 2), both TR pairs

of helical edge states correspond to the Dirac point kx ¼ 0
instead. Since, as remarked, our Hamiltonian exhibits

particle-hole symmetry, the equation ��n;kx
¼ �y��n;kx

holds

for each eigenvalue �n;kx , where ��n;kx
is the associated

quasiparticle annihilation operator. Thus, for zero-energy

edge states, �0 ¼ �y
0 , indicating that the edge states in our

system satisfy Majorana fermion statistics.
Phase diagram with self-consistent pairing gap.—

Within BCS mean-field theory, let V � Vk;k0 > 0 denote

the effective attraction strength in each band. Then the
pairing gap � ¼ �c ¼ �Vhck;"c�k;#i ¼ ��d, and the

ground-state energy can be written as Eg ¼
2NxNyð�2=VÞ þP

kð�1;k þ �2;k � 2�Þ. The first (con-

stant) term is the condensation energy, which was ne-
glected in H. By using Eq. (2) and minimizing Eg, we

obtain the stable self-consistent pairing gap� as a function
of the remaining control parameters [24]. The resulting
zero-temperature phase diagram is shown in Fig. 3. For
� ¼ 0 (top panel), the average fermion number is consis-
tent with half-filling, and thus with an insulating phase
when� ¼ 0. In particular, when 0< jucdj< 4, the ground
state is known to correspond to a TI phase [17].
Interestingly, without self-consistency, the TI cannot be
turned into a TS directly, as shown in the top panel of
Fig. 1. However, after self-consistency is taken into ac-
count, the topologically trivial phase with Cþ ¼ �2 dis-
appears, and a first-order QPT can connect the two phases.
For � ¼ �1 (bottom panel), the average fermion number
is found to be less than half-filling, realizing a metallic
phase when � ¼ 0. Derivatives of the ground-state energy
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FIG. 2 (color online). Excitation spectrum of Hamiltonian H
on a cylinder for � ¼ 0, t ¼ 1, � ¼ 1. Panel (a), Cþ ¼ 1: � ¼
2, ucd ¼ 3; Panel (b), Cþ ¼ �1: � ¼ 2:5, ucd ¼ 2; Panel (c),
Cþ ¼ 0: � ¼ 2, ucd ¼ 1; Panel (d), Cþ ¼ 2: � ¼ 0:8, ucd ¼
1:5. Note that the bulk gap scales as minð�;�Þ. The number of
lattice sites ðNx;NyÞ ¼ ð40; 100Þ.
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indicate that all QPTs, except the TI-to-TS phase transi-
tion, are continuous.

Discussion.—A number of remarks are in order. First,
while the choice of SO coupling strengths and s-wave
pairing gaps obeying �c ¼ ��d and �c ¼ ��d affords a
fully analytical treatment, relaxing these conditions may be
necessary to make contact with real materials. Numerical
results on a cylinder show that the level crossing of the
Majorana edge states in the TS phase is robust against
perturbations around �c ¼ ��d, including the possibility
that the SO coupling vanishes in one of the bands. TS
behavior also persists if j�cj � j�dj � 0, as long as the
phase difference between pairing gaps is�. In the presence
of a phase mismatch ", edge modes are found to become
gapped, with a minimal gap that scales linearly with ".
Interestingly, however, preliminary results indicate that
adding a suitable Zeeman field can allow (at the expense
of breaking TR invariance) gapless Majorana excitations to
be restored, with a precise tuning of the phase difference
being no longer required. It is also worth noting that one
can reinterpret the band index in H as a layer index, and
so H may be thought of as describing a bilayer of super-
conductors with phase-shifted pairing gaps, and an

interlayer couplingHcd. Beside establishing a formal simi-
larity with the scenario discussed by Fu and Kane [10],
such an interpretation may offer additional implementation
flexibility, as the possibility to control the superconducting
and SO couplings by an applied gate voltage has been
demonstrated recently [25].
Second, we have thus far restricted to 2D systems in

order to simplify calculations. Preliminary results indicate
that a qualitatively similar behavior (that is, the possibility
of even or odd numbers of pairs of gapless Majorana
surface states) also exists for 3D systems obtained from a
natural extension of our 2D Hamiltonian. It is especially
suggestive to note that a � phase shift in the order parame-
ter across two bands is also believed to play a key role in
iron pnictide superconductors [26], hinting at possible
relationships between TS behavior and so-called s� pair-
ing symmetry. While a more detailed investigation is
underway, it is our hope that multiband superconductivity
may point to new experimentally viable venues for explor-
ing topological phases and their exotic excitations.
It is a pleasure to thank Charlie Kane for insightful

discussions. Support from the NSF through Grants
No. PHY-0903727 (to L. V.) and 1066293 (Aspen Center
for Physics) is gratefully acknowledged.

[1] E. Majorana, Nuovo Cimento 14, 171 (1937).
[2] F. Wilczek, Nature Phys. 5, 614 (2009).
[3] F. T. Avignone, S. R. Elliott, and J. Engel, Rev. Mod. Phys.

80, 481 (2008).
[4] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045

(2010).
[5] G. Moore and N. Read, Nucl. Phys. B360, 362 (1991).
[6] A. Kitaev, Phys. Usp. 44, 131 (2001).
[7] C. Nayak et al., Rev. Mod. Phys. 80, 1083 (2008).
[8] N. Read and D. Green, Phys. Rev. B 61, 10 267 (2000).
[9] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[10] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[11] T.D. Stanescu et al., Phys. Rev. B 81, 241310(R) (2010).
[12] B. A. Volkov and O.A. Pankratov, JETP Lett. 42, 178

(1985); O.A. Pankratov, S. V. Pakhomov, and B.A.
Volkov, Solid State Commun. 61, 93 (1987).

[13] A. C. Potter and P. A. Lee, Phys. Rev. Lett. 105, 227003
(2010); J. D. Sau et al., arXiv:1103.2770; L. Mao et al.,
arXiv:1105.3483; J. D. Sau et al., Phys. Rev. Lett. 104,
040502 (2010); J. Alicea, Phys. Rev. B 81, 125318 (2010).

[14] TR-invariant TSs in 2D and 3D have been also analyzed in
X.-L. Qi et al., Phys. Rev. Lett. 102, 187001 (2009), based,
however, on p-wave pairing.

[15] H. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev. Lett.
3, 552 (1959).

[16] J. Nagamatsu et al., Nature (London) 410, 63 (2001); R.
Khasanov et al., Phys. Rev. Lett. 98, 057007 (2007); M.
Jourdan et al., ibid. 93, 097001 (2004); Y. Kamihara et al.,
J. Am. Chem. Soc. 130, 3296 (2008); A. P. Petrović et al.,
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