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The multipactor is a vacuum discharge based on a secondary electron emission. A novel resonant form

is proposed that combines one- and two-surface impacts within a single period, provided the total transit

time is an odd number of rf half-periods and the product of secondary yields exceeds unity. For low fD

products, the simplest such mode is shown to significantly increase the upper electric field boundary of the

multipacting region and lead to overlap of higher-order bands. The results agree nicely with 3D particle-

in-cell code simulations. Practical implications of the findings are discussed.
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The multipactor is a vacuum discharge based on a
secondary electron emission (SEE) [1]. Often destructive,
it can occur in a wide variety of scenarios, such as rf
windows [2–4], accelerator structures [5,6], or satellite
communication devices [7,8]. A two-surface multipactor
in rectangular geometries is generally understood as a
resonant discharge, where the electron transit time across
the gap has to equal an odd number of rf half-periods. A
one-surface multipactor, on the other hand, has been
thought to require a dc magnetic or electric field, for
example, from the charging of a dielectric surface.
Despite discrepancies with experiments and simulations
[9], and despite observations of complex electron orbits
in computer simulations, theoretical studies of the multi-
pactor remain neatly split into those considering solely a
two-surface multipactor and those considering solely a
one-surface multipactor. Recent advanced theoretical mod-
els such as period-n multipactors [10,11], more complex
hybrid resonance modes [9], or a nonresonant ‘‘polyphase
regime’’ [12] have remained squarely within the realm of
the two-surface multipactor.

In this Letter, I propose a qualitatively different theo-
retical framework that involves both same-surface and
two-surface impacts. The theory developed here success-
fully and quantitatively agrees with predictions from 3D
particle-in-cell code simulations. The newmodes are found
to significantly extend the region of parameter space for
multipactor growth, especially for narrow gaps as found in
modern, miniaturized satellite communications devices.

For such gaps, the initial velocity v0 of the secondaries
has been recognized to play an important role in the
dynamics [13–15]. Generally, it substantially affects the
multipactor boundaries ifN�v0 �!D, where! ¼ 2�f is
the rf angular frequency, D the gap separation, and N (odd
integer) the order of the multipactor, i.e., the number of
half rf periods during the electron transit. Furthermore, a
nonzero emission velocity implies that resonance can be
maintained for negative emission phases, when the rf
electric field is retarding, provided the field changes sign
before the electrons impact the originating surface. This

concept is used to derive the ‘‘cutoff’’ upper field limit for
the multipactor, namely, the maximum electric field for the
secondaries to just clear the originating surface.
A multipactor also requires growth, meaning the SEE

yield (average number of emitted secondaries for each
impacting primary electron) must exceed unity. The ma-
jority of the literature implicitly assumes that the yield
must exceed unity for each impact, but this is not strictly
true. Like a period-n multipactor, it is required only that
the product of the yields over one period exceeds unity.
The distinction is poignant considering the higher propor-
tion of backscattered electrons for low primary impact
energies [8,16,17].
Hence, we can imagine an entirely new mechanism for

the multipactor, illustrated schematically in Fig. 1. For
electric fields beyond the cutoff limit, electrons are re-
turned to the surface with a low impact energy. Instead of
assuming the discharge is extinguished, as is usually done,
we allow the electrons to produce secondaries, reduced in
number, which then propagate to the other surface. Below,
we derive the fixed points assuming a total transit time ofN
rf half-periods and demonstrate growth, provided that the
product of the yields from the two impacts exceeds unity.
Once we permit mixing single-surface and two-surface
impacts, we realize the potential for a vast number of
mixed modes. We suggest the illustrative term ‘‘ping-
pong’’ modes.
To analyze the electron dynamics, we use a 1D parallel-

plate geometry with a perpendicular rf electric field
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x
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FIG. 1 (color online). Schematic of particle orbits in a period-2
ping-pong multipactor.
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(Fig. 1), of the form EðtÞ ¼ �E0 sinð!tþ �Þ, where � is
the rf phase when the electrons enter the gap at x ¼ 0. We
ignore the effect of the rf magnetic field due to the low
energies of the multipacting electrons, which at most can
reach a few keV while maintaining an SEE yield greater
than unity. An electron (mass m, charge �e) will experi-
ence an acceleration (nonrelativistic) given by eE=m. In
this analysis, it is convenient to use normalized variables:
� ¼ !t, �x ¼ x=D, �v ¼ v=!D, and �E0 ¼ eE0=mD!2, for
the time, position, velocity, and electric field, respectively.
Using this notation, we integrate the acceleration for an
electron launched at t ¼ 0 from the plate at x ¼ 0 with a
fixed, perpendicular velocity component v0:

�vð�; �Þ ¼ � �E0½cosð�þ �Þ � cos�� þ �v0; (1)

�xð�; �Þ ¼ � �E0½sinð�þ �Þ � sin�� � cos�� þ � �v0: (2)

For the standard, period-1 (P1), multipactor, the fixed
phase �0 is obtained by setting �xðN�; �0Þ ¼ 1 in Eq. (2).

The procedure for the period-2 ping-pong (PP2) mode
has two steps. First, we solve Eq. (2) with the condition
�xð�1; �0Þ ¼ 0 so as to determine the transit time �1 to the
first impact as a function of the launch phase. Then, we
reapply the equation with the condition �xðN���1;�1Þ¼1,
where the starting phase is modified to �1 ¼ �0 þ �1. This
results in the following equation pair from which we can
determine the unknowns �1 and �0:

0 ¼ � sinð�0 þ �1Þ þ sin�0 þ �1ðcos�0 þ uÞ; (3)

1= �E0 ¼ sin�0 þ sinð�0 þ �1Þ
þ ðN�� �1Þ½cosð�0 þ �1Þ þ u�; (4)

where u � �v0= �E0. The velocity at each impact can be
readily calculated from Eq. (1). It is clear that, for a
single-surface multipactor with no dc electric or magnetic
fields, the resonance condition � ¼ 2N� [18] implies no
net gain in electron energy above the emission energy,
which is generally of the order of a few eV and thus
insufficient to cause an avalanche. The PP2 mode breaks
the symmetry, permitting a large energy gain during one of
the transits.

For theoretical calculations of SEE yield, we use the
Vaughan model [19], including dependence of yield on
impact angle, but modify it according to Ref. [8] in order
to better capture the physics of low-energy primaries. In
the simulations described below, we use the code WARP

[20], a 3D particle-in-cell code that has been successfully
applied to model electron cloud effects in accelerators [21].
WARP uses the POSINST library for modeling SEE [17],

which has an extensive description of the SEE parameters
including dependence of yield on impact energy and angle,
a detailed emission model with angular and energy distri-
butions, and inclusion of backscattered primaries. For the
purposes of comparison to simulation, we chose unbaked
copper surfaces and selected the parameters of the

modified Vaughan model to correspond to the POSINST

parameters used by the code. Specifically, we used a
peak yield �max ¼ 2:1, occurring at an impact energy
Wmax ¼ 271 eV, and a cutoff parameter W0 ¼ 6 eV (see
Ref. [8]), resulting in a first crossover pointW1 of 39.4 eV.
The yield for impact energies belowW0 is chosen to be 0.7,
corresponding to the sum of probabilities of elastic and
inelastic backscatter [17]. The theory also assumes mono-
energetic emission, with 1

2mvox
2 ¼ 1

2mvoy
2 ¼ 3 eV. Here,

the normal component vox is the same as v0, while the
tangential component voy is unaffected by the rf electric

field but is included in the impact angle calculation.
Figure 2 shows the fixed phases from the numerical

solution of Eqs. (3) and (4) as a function of �E0, for N¼1
and �v0 ¼ 0:1635, corresponding to fD ¼ 1 GHzmm. The
blue solid line indicates the resonant phase for a P1 multi-
pactor. At �E0 � 0:5, the P1 solution becomes unstable and
bifurcates into fixed phases of the PP2 mode, illustrated by
the black and green solid lines (black for �0 and green for
�1 ¼ �0 þ �1). The vertical lines indicate the electric field
boundaries for the two regions, with the blue-colored ones
corresponding to those for a P1 mode (see [1,13,15]). Note
the two upper boundaries: the stability limit (dotted line)
and the cutoff limit (dashed line). The low fD products
considered here result in reduced impact energies, close to
the first crossover point, so the material must be taken into
account. The black dotted line indicates a modified lower
boundary below which a multipactor can exist from phase
considerations, but the energy gain is insufficient. This
modified boundary can be calculated from Eq. (1) by

setting �vðN�; �0Þ ¼ �v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2W1=m
p

=!D.
The multipacting region for the PP2 mode is far wider

than that of the P1 mode. The lower PP2 boundary is
immaterial, as the multipactor defaults to the P1 mode
when the latter is stable [22]. The upper field boundary
for the PP2 mode (dashed red line) can be calculated from
cutoff considerations in a similar fashion to P1, where the
mathematical conditions now become xð�2; �1Þ ¼ 0 and

FIG. 2 (color online). Fixed phases as a function of �E0 for
�v0 ¼ 0:149, for P1 (blue line) and PP2 (black and green lines)
modes. The vertical lines are limits from P1 stability (dotted blue
line), lower limit due to W1 (dotted black line), P1 upper cutoff
(dashed blue line), and PP2 upper cutoff (dashed red line).
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�vð�2; �1Þ ¼ 0, for �2 <N�� �1. The stability boundaries
of the PP2 mode can be derived from the change of arrival
phase after one period due to a departure from the fixed
phase at launch. This can be expressed as jd�2=d�0j< 1,
where

d�2
d�0

¼@�2
@�1

@�1
@�0

¼ðN���1Þsin�1þu

cos�0þcos�1þu
� �1 sin�0þu

cos�0�cos�1þu
:

The partial derivatives are obtained by implicit differen-
tiation of Eq. (2), evaluated at the limits � ¼ �0 and �1,
respectively. In practice, the importance of this limit is
doubtful for two reasons. First, a realistic broad distribu-
tion of emission velocities [9] tends to make the boundaries
more fuzzy. Second, additional focusing is provided by a
dynamic mechanism [23] where impacts at phases produc-
ing higher yields dominate.

Figure 3 illustrates the growth region by plotting the
yield as calculated from the impact velocities. The vertical
lines are the same boundaries as in Fig. 2. The dashed lines
are the yields calculated from theory: blue for a P1 mode,
green for the single-surface impact of the PP2 mode, and
black for the two-surface impact, while red is the product
of the two PP2 yields. Note that the black and blue dashed
lines almost coincide, likely because of the relatively small
difference in starting phases and transit times (�1 � 2�).
Meanwhile, the single-surface yield is constant at 0.7,
which is the value we assumed for impacts below 6 eV,
indicating less energetic impacts for all cases in the scan.

To test the theoretical predictions, we set up a 3D
simulation model with two parallel plates (0.125 mm thick,
23� 23 mm wide) separated by a 2 mm gap. Electrons
(5000 particles) are seeded uniformly across the gap, with a
thermal velocity distribution, prior to the start of the
simulation. We use 640 time steps per rf period (at f ¼
0:5 GHz), sufficient for accurate trajectories and good
diagnostics. The particle weight is held fixed throughout
the simulation, so more particles are created if the multi-

pactor is growing. Generally, runs for 5–10 rf periods are
sufficient to indicate growth or decay. All the numerical
parameters have been thoroughly tested for convergence.
Since we are interested in the existence and onset of the
multipactor, as opposed to its saturation, the field solver for
most simulations is turned off to speed up computations.
Test simulations with space charge resulted in similar
behavior, apart from wider bunches in phase space, and
eventual saturation after the multipactor bunch built to a
high density (� 108–109 particles). The rf electric field is
specified as an external field on a 3D grid and updated
every time step. Hence, beam loading effects from the
multipactor [1] are ignored, again justified by the focus
of this Letter on initiation of the discharge.
For the first test, we ran a series of 200 simulations

scanning the peak electric field over the range �E0 ¼
0–1:1. Assuming the geometry represents the center por-
tion of a waveguide with 50 � impedance, this range
corresponds to rf powers from 0 to 600 W. The solid black
line in Fig. 3 illustrates the average secondary electron
yield obtained from the simulations, as a function of rf
power. For each simulation, the average yield is calculated

by using the formula ðn=n0Þ1=M, where n is the total
number of particles at the end of the simulation, n0 the
number of seed particles, and M the number of rf half-
periods run. From Fig. 3, it is evident that the multipactor
continues to grow for powers far above the stability and
cutoff limits predicted for a P1 mode (almost a factor of 4
larger). The point where the secondary yield drops below 1
is close to the cutoff predicted for the PP2 mode. Note the
smooth transition from period-1 to the ping-pong mode,
likely caused by the spread of electron emission energies
and angles in the simulation.
The results presented so far were for a single value of �v0.

We next investigate the dependence of the PP2 mode on
this initial velocity or, through the normalization, on fD
for a fixed v0. Figure 4 illustrates the multipactor bounda-
ries from theory for N ¼ 1 and N ¼ 3. It is clear that the
ping-pong mode (red lines) vastly expands the susceptibil-
ity region for low fD products. For a P1 multipactor, the
N ¼ 3 band (dashed blue lines) is narrow and well sepa-
rated from the N ¼ 1 band (solid blue lines). The ping-
pong mechanism extends it much further, overlapping with
theN ¼ 1 band. It seems in fact that the ping-pong mode is
the prevalent multipacting mechanism for low fD, given
that it occupies a broader region than the ‘‘normal’’ two-
surface multipactor. The lower yields associated with the
ping-pong mode (evident in Fig. 3) only lengthen the time
needed for the discharge to grow to a certain strength.
Figure 5 concentrates on the upper limit of the N ¼ 1

band from Fig. 4, comparing it to another series of simu-
lations. Keeping the frequency and the material fixed, the
gap separation is adjusted over the range 0.75–15.0 mm so
as to vary �v0. For each gap, we run a series of simulations
scanning the electric field strengths, calculate the electron

FIG. 3 (color online). SEE yield from P1 (blue line) and PP2
impacts (green and black lines) for unbaked copper. The red
curve is the product of the yields from the two ping-pong
impacts. The solid black line is the growth rate of the multipactor
from WARP simulations as a function of rf power. The vertical
lines are the same as in Fig. 2, except the abscissa is transformed
to rf power assuming a 50 � impedance.
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gain from each, and interpolate to find the upper bound. For
a fixed material, varying the fD product implies that the
average impact energy is reduced for larger �v0; hence, the
yield can drop below unity. The dotted line charts the lower
boundary of the P1 multipactor for which the impact
energy is W1. A similar effect is seen on the opposite
side, for low �v0 (high fD), where the energy gain is also
reduced as the fixed phase becomes more positive.

These caveats aside, the upper limit obtained from
simulation (the circles in Fig. 5) agrees extremely well
with the cutoff boundary for the PP2 mode over an inter-
mediate range of �v0 (½0:1; 0:2� for copper). This has two
major implications. First, the ping-pong multipactor is not
a mere mathematical construct but can be observed in
realistic 3D simulations. Second, this mechanism consid-

erably widens the multipactor susceptibility region by ex-
tending the upper field bounds. The concept of ‘‘cutoff
limit’’ is muddied by the demonstration of the multipac-
tor’s survival despite the return of secondaries to the orig-
inating surface.
Although we analyzed the simplest such case, involving

one single-surface and one two-surface impact per period,
we can generalize to a whole class of ping-pong modes, far
more mathematically complex to analyze. We can denote
them with the notation SnDm, where n;mð>1Þ are the
numbers of single- or two-surface impacts per period,
respectively. The synchrony condition for these general-
ized ping-pong modes can be expressed as ��k ¼ N�,
where the �k are the transit times summed over one period
and N has the same parity as m.
In this study, we considered copper, which has a modest

SEE yield. For dielectrics with high �max and low W1, one
can expect a higher likelihood of ping-pong modes, over a
wider range of fD products, including high-period ava-
lanches involving multiple single-surface impacts. The
multipactor in dielectrics is important for a class of
dielectric-loaded structures being considered for high-
gradient acceleration [6]. The cylindrical symmetry of
such structures further blurs the line between single-
surface and two-surface multipactors, especially when
off-normal emission angles are considered. As Sinitsyn,
Nusinovich, and Antonsen have shown [24], the particle
orbits can be complex and involve several bounces in the
same localized part of the waveguide before shooting
across the gap. It is interesting to note that Wu and Ang
[25] had hinted at the possibility of mixed one- and two-
surface modes but ignored it due to their sole focus on the
single-surface multipactor. I believe that the ping-pong
modes described here are an important step towards a
comprehensive theoretical model for multipactor in cylin-
drical dielectric-loaded structures.
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