
Universal Nonlinear Small-Scale Dynamo

A. Beresnyak

Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
Ruhr-Universität Bochum, 44780 Bochum, Germany

(Received 21 September 2011; published 18 January 2012)

We consider astrophysically relevant nonlinear MHD dynamo at large Reynolds numbers (Re). We

argue that it is universal in a sense that magnetic energy grows at a rate which is a constant fraction CE of

the total turbulent dissipation rate. On the basis of locality bounds we claim that this ‘‘efficiency of the

small-scale dynamo‘‘, CE, is a true constant for large Re and is determined only by strongly nonlinear

dynamics at the equipartition scale. We measured CE in numerical simulations and observed a value

around 0.05 in the highest resolution simulations. We address the issue of CE being small, unlike the

Kolmogorov constant which is of order unity.
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Introduction.—MHD turbulence is ubiquitous in astro-
physical and space environments [1]. Reynolds numbers
are, typically, very high, owing to astrophysical scales
which are enormous compared to dissipative scales. One
of the central processes of MHD dynamics is how con-
ductive fluid generates its own magnetic field, a process
known broadly as ‘‘dynamo.’’ Turbulent dynamo has been
subdivided into large-scale (mean-field) dynamo and
small-scale (fluctuation) dynamo depending on whether
magnetic fields are amplified on scales larger or smaller
than outer-scale of turbulence. Although several ‘‘no-
dynamo’’ theorems have been proved for flows with sym-
metries, a generic turbulent flow, which possesses no exact
symmetry, was expected to amplify magnetic field by
stretching, due to the particle separation in a turbulent
flow. For the large-scale dynamo, a ‘‘twist-stretch-fold’’
mechanism was introduced [2]. Turbulent flow possessing
perfect statistical isotropy can not generate large-scale
field, so the observed large-scale fields, such as in the
disk galaxies, are generated when statistical symmetries
of turbulence are broken by large-scale asymmetries of the
system, such as stratification, rotation and shear (see, e.g.,
[3]). Since these symmetries are only weakly broken,
large-scale dynamo is slow. Small-scale dynamo does not
suffer from this restriction and can be fast. Kinematic
small-scale dynamo, which ignores the backreaction of
the magnetic field has been studied extensively [4].
However, from these models it was not clear whether after
kinematic stage it will continue to operate. Also for astro-
physically large Re it becomes inapplicable at very short
time scales. Indeed, kinematic dynamo possessing positive
spectral index, typically 3=2, is incompatible with obser-
vations in galaxy clusters [5] which clearly indicate steep
spectrum with negative power index at small scales.
Because of preexisting astrophysical fields, small-scale
dynamo starts in nonlinear regime. It was discovered nu-
merically that small-scale dynamo continues to grow after
kinematic stage, producing steep spectrum at small scales

and significant outer-scale fields [6–9]. Furthermore, MHD
turbulence produces turbulent diffusivity (aka ‘‘� effect‘‘),
which is essential for large-scale dynamo [3] and recon-
nection [10,11]. Saturation of small-scale dynamo seems to
be independent on Re and Pr as long as Re is large [6] and
the magnetic energy growth rate could be constant
[8,9,12,13]. Small-scale dynamo is faster than large-scale
dynamo in most astrophysical environments and magnetic
energy grows quickly to equipartition with kinetic motions,
with the largest scales of such field being a fraction of the
outer scale of turbulence. Subsequently, these turbulent
fields are slowly ordered by mean-field dynamo, with
turbulent diffusivity of MHD turbulence playing essential
role. In this Letter we provide sufficient analytical and
numerical argumentation behind the universality of the
nonlinear small-scale dynamo.
Nonlinear small-scale dynamo.—We assume that the

spectra of magnetic and kinetic energies at a particular
moment of time are similar to what is presented on Fig. 1.
Magnetic and kinetic spectra cross at some ‘‘equipartition’’
scale 1=k�, below which both spectra are steep due toMHD
cascade (see, e.g., [14,15]). This is suggested by both
numerical evidence [9,16] and observations of magnetic
fields in clusters of galaxies [5]. At larger scales magnetic
spectrum is shallow, k�, �> 0, while kinetic spectrum is
steep due to the hydrodynamic cascade. Most of the mag-
netic energy is concentrated at scale 1=k�. We designate
CK and CM as Kolmogorov constants of hydro and MHD,
respectively. The hydrodynamic cascade rate is � and the
MHD cascade rate as �2. Because of the conservation of
energy in the inertial range, magnetic energy will grow at a
rate �� �2. We will designate CE ¼ ð�� �2Þ=� as an
‘‘efficiency of the small-scale dynamo’’ and will argue
that this is a true constant, since: (a) turbulent dynamics
is local in scale in the inertial range; (b) neither ideal MHD
nor Euler equations contain any scale explicitly. Magnetic
energy, therefore, grows linearly with time if � ¼ const.

The equipartition scale 1=k� will grow with time as t3=2
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[13]. This is equivalent to saying that small-scale dynamo
saturates at several dynamical times at scale 1=k� and
proceeds to a twice larger scale [12]. If magnetic energy
grows approximately till equipartition [6,9], the whole
process will take around several dynamical time scales of

the system, or more quantitatively, ðC3=2
K =CEÞðL=vLÞ.

Locality of the small-scale dynamo.—We will use
‘‘smooth filtering’’ approach with dyadic-wide filter in k

space [17]. We designate a filtered vector quantity as a½k�
where k is a center of a dyadic Fourier filter in the range of
wave numbers [k=2, 2k]. The actual logarithmic width of
this filter is irrelevant to further argumentation, as long as it
is not very small. We will assume that the vector field a is
Hölger-continuous with some exponent and designate

ak ¼ hja½k�j3i1=3 which has to scale as k�3 , e.g., k�1=3 for
velocity in Kolmogorov turbulence. The energy cascade

rate is � ¼ C�3=2
K kv3

k, where we defined Kolmogorov con-

stant CK by third order, rather than second order quantities.
We will keep this designation, assuming that traditional
Kolmogorov constant could be used instead. We use spec-

tral shell energy transfer functions such as Tvvðp; kÞ ¼
�hv½k�ðv � rÞv½p�i, Twþwþðp; kÞ ¼ �hwþ½k�ðw� � rÞwþ½p�i
[18], applicable to incompressible ideal MHD equations,
where w� are Elsässer variables and v, b and w� are
measured in the same Alfvenic units. Using central fre-
quency k and studying ‘‘infrared‘‘ (IR) transfers from
p � k, and ’’ultraviolet’’ (UV) transfers, from q � k,
we will provide absolute bounds on jTj, in units of energy
rate as in [17,19], and relative volume-averaged bounds
which are divided by the actual energy rate and are dimen-
sionless. We will consider three main k intervals presented
on Fig. 1: k � k� (‘‘hydrodynamic cascade’’), k� k�
(dynamo) and k � k� (‘‘MHD cascade’’).

MHD cascade, k � k�.—The only energy cascades here
are Elsässer cascades and, by the design of our problem,
wþ and w� have the same statistics, so we will drop �.
For an exchange with p � k band, for jTwwj, using Hölger
inequality and wave number conservation we get an
upper bound of pwpw

2
k and for q � k band it is kw2

qwk,

these bounds are asymptotically small. For the full list of

transfers and limits refer to Table I. The relative bound

should be taken with respect to C�3=2
M kw3

k, where CM is a

Kolmogorov constant for MHD, from which we get that
most of the energy transfer with the [k] band should come

from [kC�9=4
M , kC9=4

M ] band, see [15]. The global transfers
between kinetic and magnetic energy must average out in
this regime, nevertheless, the pointwise IR and UV trans-
fers can be bounded by pbpvkbk and kb2qvk and are

small [19].
Hydrodynamic cascade, k � k�.—Despite having some

magnetic energy at these scales, most of the energy transfer
is dominated by velocity field. Indeed, jTvvj is bounded by
pvpv

2
k for p � k and by kv2

qvk for q � k. Compared to

these, jTbvj transfers are negligible: pbpvkbk and kb2qvk.

For magnetic energy in p � k case we have jTvbj and jTbbj
transfers bounded by pvpb

2
k, pbpvkbk and for q � k case

jTvbj and jTbbj are bounded by kbkvqbq. Out of these three

expressions the first two go to zero, while the third goes to
zero if �� 2=3< 0 or have a maximum at q ¼ k� if ��
2=3> 0. This means that for the transfer to magnetic
energy we have IR locality, but not necessarily UV locality.
Note that magnetic energy for k � k� is small compared to
the total, which is dominated by k ¼ k�. We will assume
that �� 2=3> 0 and that the spectrum of bk for k < k� is
formed by nonlocal jTvbj and jTbbj transfers from k�,
namely, magnetic structures at k are formed by stretching
of magnetic field at k� by velocity field at k. Magnetic
spectrum before k� is, therefore, nonlocal and might not be
a power-law, but our further argumentation will only re-
quire that bk < vk for k < k�.
Dynamo cascade k ¼ k�.—In this transitional regime

our estimates of Elsässer UV transfer and kinetic IR trans-
fer from two previous sections will hold. We are interested
how these two are coupled together and produce observed
magnetic energy growth. IR p � k� jTvbj and jTbbj trans-
fers will be bounded by pvpb

2
k� and pbpvk�bk� , which go

to zero, so there is a good IR locality. Ultraviolet transfers
will be bounded by k�bk�bqvq. This quantity also goes to

zero as q increases, so there is an UV locality for this
regime as well. Let us come up with bounds of relative
locality. Indeed, the actual growth of magnetic energy was

defined as �B ¼ �� �2 ¼ CEC
�3=2
K kv3

k. So, p � k� IR

bound is k�C3=2
E C�9=4

K and UV bound is k�C�3=2
E C9=4

M . We
conclude that most of the interaction which result in mag-
netic energy growth must reside in the wave vector interval

TABLE I. Transfers and upper limits.

Transfers p � k q � k

Tvvðp; kÞ ¼ �hv½k�ðv � rÞv½p�i pvpv
2
k kvkv

2
q

Tbbðp; kÞ ¼ �hb½k�ðv � rÞb½p�i pbpvkbk kbkvqbq
Tvbðp; kÞ ¼ hb½k�ðb � rÞv½p�i pvpb

2
k kbkvqbq

Tbvðp; kÞ ¼ hv½k�ðb � rÞb½p�i pbpvkbk kvkb
2
q

Twþwþðp; kÞ ¼ �hwþ½k�ðw� � rÞwþ½p�i pwpw
2
k kwkw

2
q

FIG. 1. A cartoon of kinetic and magnetic spectra in small-
scale dynamo, at a particular moment of time when equipartition
wave number is k�.
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of k�½C3=2
E C�9=4

K ; C�3=2
E C9=4

M �. Numerically, if we substitute
CK ¼ 1:6, CM ¼ 4:2, CE ¼ 0:05 we get the interval of
k�½0:004; 2000�. So, despite being asymptotically local,
small-scale dynamo can be fairly nonlocal in practice.

Summarizing, the kinetic cascade at large scales and the
MHD cascade at small scales are dominated by local
interactions. The transition between the kinetic cascade
and the MHD cascade is also dominated by local interac-
tions, and since ideal MHD equations do not contain any
scale explicitly, the efficiency of small-scale dynamo CE is
a true universal constant. Note that CE relates energy
fluxes, not energies, so this claim is unaffected by the
presence of intermittency. Magnetic spectrum at k � k�
is dominated by nonlocal triads that reprocess magnetic
energy from k ¼ k� but, since this part of the spectrum
contains negligible magnetic energy, our universality claim
is unaffected by this nonlocality.

Numerical results.—We performed numerical simula-
tions of statistically homogeneous isotropic small-scale
dynamo by solving MHD equations with stochastic non-
helical driving and explicit dissipation with Prm ¼ 1. The
details of the code and driving are described in detail in our
earlier publications [16,20] and Table II shows simulation
parameters. We started each simulation from previously
well-evolved driven hydro simulation by seeding low level
white noise magnetic field. We ran several statistically
independent simulations in each group and obtained
growth rates and errors from sample averages. In all simu-
lations, except M14, the energy injection rate was con-
trolled. Figure 2 shows sample-averaged time evolution of
magnetic energy. Growth is initially exponential and
smoothly transition into the linear stage. Note, that scatter
is initially small, but grows with time, which is consistent
with the picture of magnetic field growing at progressively
larger scales and having progressively less independent
realizations in a single data cube.

Efficiency of small-scale dynamo.—Our CE is much
smaller than unity. One would expect a quantity of order
unity because this is a universal number, determined only
by strong interaction on equipartition scale. If we refer to
the ideal incompressible MHD equations, written in terms

of Elsässer variables, @tw
� þ Ŝðw� � rÞw� ¼ 0, the dy-

namo could be understood as decorrelation of w� which
are originally equal to each other in the hydrodynamic
cascade. In our case this decorrelation is happening at the
equipartition scale k�. Being time dependent, it propagates

upscale, while ordinarily energy cascade goes downscale.
The small value of CE might be due to this. As opposed to
picture with multiple reversals and dissipation due to mi-
croscopic diffusivity, typical for kinematic case, in our
picture we appeal to turbulent diffusion which helps to
create large-scale field. Both stretching and diffusion de-
pend on turbulence at the same designated scale 1=k�, so in
the asymptotic regime of large Re one of these processes
must dominate. As CE is small, stretching and diffusion are
close to canceling each other.
Kinematic dynamo rates.—A better studied and under-

stood kinematic dynamo might shed some light on the
problem of small CE. In the kinematic regime, when we
neglect Lorentz force in the MHD equation, the growth is
exponential and the rate is expected to come from fastest
shearing rate of smallest turbulent eddies. Observed rates,
however, are smaller which was interpreted as competition
between stretching and turbulent mixing [22]. In our simu-
lations, in the kinematic regime of run M7-9 we observed

growth rate ��� ¼ 0:0326, where �� ¼ ð�=�Þ1=2 is a

Kolmogorov time scale, which is consistent with [6,23].
In terms of minimum time scale, �min 	 9��, ��min ¼ 0:3,

which is still small. Kazantsev-Kraichnan model [4] pre-
dicts ��min � 1. This model, however, uses ad-hoc delta-
correlated velocity which does not correspond to any
dynamic turbulence and its statistics is time-reversible as
opposed to time-irreversible real turbulence. Time irrever-
sibility of hydro turbulence actually mandates that fluid
particles separate faster backwards in time, since hv3

kli ¼
�4=5�l is negative.
In order to study the interplay of stretching and diffu-

sion, we performed several simulations of kinematic dy-
namo forward and backward in time. We followed full
three-dimensional evolution of v and b and approximated
‘‘backward in time’’ by reversing velocity direction. Initial
condition for magnetic field was typically random noise.
Since we could not reverse viscous losses in DNS, we used

TABLE II. Three-dimensional MHD simulations.

Run n N3 Dissipation h�i Re CE

M1-6 6 2563 �7:6
 10�4k2 0.091 1000 0:031� 0:002
M7-9 3 5123 �3:0
 10�4k2 0.091 2600 0:034� 0:004
M10-12 3 10243 �1:2
 10�4k2 0.091 6600 0:041� 0:005
M13 1 10243 �1:6
 10�9k4 0.182 � � � 0:05� 0:005
M14 1 15363 �1:5
 10�15k6 0.24 � � � 0:05� 0:005

FIG. 2. Magnetic energy growth vs time in code units, ob-
served in simulations run M1-6 (�� ¼ 0:091 in code units), run

M7-9 (�� ¼ 0:057), and run M10-12 (�� ¼ 0:036). We used

sample averages which greatly reduced fluctuations and allowed
us to measure CE with sufficient precision.
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viscosity � ¼ 0, but magnetic diffusivity �> 0. In the first
set of simulations we set initial velocity as v and�v from
evolved viscous runs. The growth rates are shown on inset
of Fig. 3. Quite surprisingly, the ‘‘backward’’ simulation
did not produce any growth for several dynamical times.
Unexpectedly, simply reversing velocity has such a pro-
found impact on kinematic dynamo, despite spectra being
very close to each other, suggesting that it is not only the
spectrum that determines growth but rather the actual
statistical properties of velocity, which will determine
whether stretching or diffusion wins, i.e., if there is a
dynamo or a no-dynamo, even in the simple kinematic
case. In this simulation we observed a typical k2 ‘‘thermal
pool‘‘ at the end of velocity spectrum which had shortest
time scales. ’’Thermal pool‘‘ was clearly time-irreversible,
unlike the true physical thermal pool, consistent with [24].

The next series of simulations were reproducing an
actual backward in time dynamics. In order to achieve
this we evolved initial state for a fairly short time with
� ¼ 0 and then we evolved it for the same time reverting
velocity with � ¼ 0 and confirmed that final state is close
to initial state, due to reversibility of truncated Euler
equations. The results for dynamo growth is shown of
Fig. 3. We see that backward dynamo is faster by a factor
of 2:0� 0:1, which is actually consistent with the ratio of
particle diffusion forward and backward in time in [22].
This result again reinforces our statement that dynamo is a
result of competing mechanisms of turbulent stretching
and turbulent diffusion and the outcome depends on sta-
tistics of velocity other than just velocity spectrum.

A different picture was suggested in high Pr case by
[21], where, unlike our picture, magnetic energy was at
scales much smaller than kinetic and an unspecified por-
tion of kinetic energy was dissipated in hydrodynamic
cascade, while the rest diverted into magnetic spectrum,
then contributing�16% to the magnetic growth, soCE was
between 0 and 0.16. Linear growth of the ratio of magnetic
to kinetic energy with the rate of 0:0088ðt=teddyÞ was

proposed in [8], which is hard to compare to our result,
since no exact relation between kinetic energy and the
dissipation rate is available.
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