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We revisit earlier studies on Berry phases suggested to appear in certain cavity QED settings. It has been

especially argued that a nontrivial geometric phase is achievable even in the situation of no cavity photons.

We, however, show that such results hinge on imposing the rotating wave approximation (RWA), while

without the RWA no Berry phases occur in these schemes. A geometrical interpretation of our results is

obtained by introducing semiclassical energy surfaces which in a simple way brings out the phase-space

dynamics.With the RWA, a conical intersection between the surfaces emerges and encircling it gives rise to

the Berry phase.Without the RWA, the conical intersection is absent and therefore the Berry phase vanishes.

It is believed that this is a first example showing how the application of the RWA in the Jaynes-Cummings

model may lead to false conclusions, regardless of the mutual strengths between the system parameters.
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The Jaynes-Cummings (JC) model [1] has successfully
served as a workhorse in cavity electrodynamics (QED) for
more than three decades. Despite being extremely simple
and analytically solvable, it manages to theoretically ex-
plain many of the QED experiments to date, both in the
microwave [2] and optical [3] regimes, as well as more
recent experiments on superconducting qubits coupled to
transmission line resonators [4]. There are, however, ex-
ceptions where the underlying approximations of the JC
model break down and the model renders erroneous pre-
dictions. A known and controversial example is the rule out
of the so-called Dicke phase transition [5] due to ignoring
the self-energy of the electromagnetic field [6]. In this
Letter we give another example where, instead, the appli-
cation of the rotating wave approximation (RWA) yields
wrong results concerning expected Berry phases.

The first examples of quantum geometric phases date
back to the late 1950s in works by Aharonov and Bohm [7]
and Longuet-Higgins et al. [8]. However, it was not until
the seminal paper by Berry in 1984 [9], where a more
general description, and thereby also deeper understand-
ing, of these phases were outlined, that interest in the topic
seriously took off [10]. Over the years, various extensions
of the phase have been considered, as, for example, in
Ref. [11]. Nowadays it is known that the Berry phase is
not only of interest from a fundamental point of view, for
example, it turns out to be deeply rooted with topological
states of matter [12], and it may turn out to have important
applications in quantum computing [13].

In 2002, I. Fuentes-Guridi et al.modified the archetype of
Berry phases, namely, a spin-1=2 particle in a classical
magnetic field [14]. The external classical field was re-
placed by a fully quantum one, and the Berry phase was
analyzed in terms of the above-mentioned JC model. Such
an extension is most interesting since (i) the spin-1=2

particle and the field form a composite quantum system
where the driving field must be treated on the same footing
as the particle itself, and (ii) in the limit of zero photons it is
not a priori known whether quantum vacuum fluctuations
can give rise to a Berry phase. Clearly, such a vacuum
induced Berry phase would have no counterpart in a model
constructed by a classical driving field, hence it would be a
direct proof of electromagnetic field quantization. The
novel work of I. Fuentes-Guridi et al. avalanched a series
of following papers [15–21]. In particular, various exten-
sions of Ref. [14] have been addressed, such as; multiatom
(Dicke) systems [17], geometrical quantum computing
[18], decohering cavity modes [19], solid state counterparts
[20], and multilevel atom situations [21]. Most of these
references picture one or another sort of cavity QED
scheme, and more importantly the RWA has been imposed
in all of them. The main purpose of the present Letter is to
demonstrate that the presence of a nontrivial Berry phase is
indeed an outcome of applying the RWA. For this aim we
construct energy surfaces where the contour lines represent
semiclassical phase-space trajectories. In the JC model,
these trajectories encircle a conical intersection (CI) which
is the origin of the nonvanishing Berry phase. Without the
RWA, on the other hand, there exist no CI and as a conse-
quence the Berry phase is strictly zero in this case. These
semiclassical conclusions are supported by direct numerical
diagonalization of the full quantum system.Our findings are
particularly interesting since contrary to earlier discussions
on the RWA in the JC model, the flaw in its applicability
discussed here is independent on the strength of the system
parameters. The origin in such surprising results lies in the
adiabatic assumption, in this limit the counter-rotating
terms related to the RWA cannot be omitted.
We begin by reviewing the idea of Ref. [14].

Considering a two-level atom dipole interacting with a
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quantized mode of a high-Q cavity. The atom-field inter-
action in the dipole approximation takes the form (@ ¼ 1)

V ¼ g
ffiffiffi
2

p ðây þ âÞ�̂x. Here, the effective coupling g has
been taken real, ây (â) is the photonic creation (annihila-
tion) operator for the field, and �̂x is the regular x compo-
nent of the Pauli matrices which acts on the two internal
atomic states j1i and j2i. Together with the free field and
atom energies we have the Rabi Hamiltonian [22]

Ĥ R ¼ !âyâþ �

2
�̂z þ g

ffiffiffi
2

p ðây þ âÞ�̂x; (1)

where ! is the mode frequency, � the atomic transition
frequency, and �̂z is the Pauli z matrix. In an interaction

picture with respect to !ðâyâþ �̂z

2 Þ, we derive the JC

model after imposing the RWA, i.e., neglecting counter-
rotating terms,

Ĥ JC ¼ �

2
�̂z þ g

ffiffiffi
2

p ðây�̂� þ �̂þâÞ; (2)

with the atom-field detuning � ¼ ��!, and �̂� ¼
ð�̂x � i�̂yÞ=

ffiffiffi
2

p
the raising or lowering atomic operators.

The unitary transformation Ûð’Þ ¼ exp½�i’âyâ� applied
to the JC Hamiltonian gives

Ĥ 0
JC ¼ �

2
�̂z þ g

ffiffiffi
2

p ðâye�i’�̂� þ �̂þâei’Þ: (3)

The interpretation of the operator Ûð’Þ is that it phase
shifts the field by ’. For each excitation quantum number
n, the corresponding eigenstates j��

n ð’Þi traverse a loop C
on the associated Bloch sphere when ’ is varied slowly
from 0 to 2�. The accumulated Berry phases [9,10]

�� ¼ i
Z
C
d’

�
��

n ð’Þ
��������

d

d’

���������
�
n ð’Þ

�
(4)

become [14]

�� ¼ ��

�
1� �=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2

4 þ 2g2ðnþ 1Þ
q

�
þ ��ðnÞ; (5)

where ��ðnÞ is an integer times 2�. In the case of n ¼ 0, it
is seen that the phases �� are nontrivial (i.e., not a multiple
of 2�), which is the main result of Ref. [14]. We should
make clear that the quantum number n does not label the
number of photons, e.g., the eigenstates j��

1 i both contain
nonvacuum components of the field. However, what is
shown in [14] is that an atom initially in the excited state
j2i and the field in vacuum still acquires a nonvanishing
Berry phase according to the JC model. Moreover, using
the fact that the atomic ground state j1i in the same vacuum
mode does not pick up any Berry phase it is suggested how
to achieve an interference experiment capable of measur-
ing this vacuum induced Berry phase.

Before analyzing the situation without the RWA, we
present a semiclassical alternative demonstration of the
Berry phase by defining a set of energy surfaces. To this

end we give the JC Hamiltonian (2) in a quadrature repre-
sentation [22]

â ¼ 1ffiffiffi
2

p ðx̂� ip̂Þ; ây ¼ 1ffiffiffi
2

p ðx̂þ ip̂Þ; (6)

such that x̂ and p̂ obey the standard canonical commutation
relations ½x̂; p̂� ¼ i. Thus, we have

Ĥ JC ¼ �

2
�̂z þ gðx̂�̂x þ p̂�̂yÞ: (7)

Interestingly, the JC interaction can be pictured as a special
sort of spin-orbit coupling containing both the ‘‘position’’
x̂ and the ‘‘momentum’’ p̂. The adiabatic energy potentials
are obtained as the eigenvalues ofHJC, treating x̂ and p̂ as c
numbers. This is the so called Born-Oppenheimer approxi-
mation of molecular physics [23]. The resulting adiabatic
potentials,

EðJCÞ
� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

4
þ g2ðx2 þ p2Þ

s
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

4
þ g2r2

s
; (8)

can be seen as semiclassical energy surfaces such that

EðJCÞ
� ¼ const defines the semiclassical phase-space trajec-

tories. In the second equality of (8) we introduced polar
coordinates re�i� ¼ x� ip. Note that the two phases ’
and � are highly related in that they both ‘‘rotate’’ the
coordinates x and p. Note, however, while ’ is an external
control parameter, � is a dynamical variable which for a
localized (nonzero amplitude) field state, e.g., a coherent
state, approximately change linearly in time for the JC
model.
In Fig. 1(a) we show the semiclassical energy surfaces

EðJCÞ
� ðx; pÞ. The phase-space trajectories are given for fixed

r. At r ¼ 0 the two surfaces come the closest together
(separated by �). This point, ðx; pÞ ¼ ð0; 0Þ, characterizes
a CI [23]. The physics of CI’s has been thoroughly studied
in molecular and chemical physics for half a century
[10,23,24], and it is known that adiabatically encircling a
CI of the above Jahn-Teller type [24] (i.e., letting� change
from 0 to 2�) at a distance r ¼ R gives a Berry phase [25]

�ðCIÞ
� ¼ ��

�
1� �=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2

4 þ g2R2
q

�
: (9)

We can identify the phase-space radius R2=2 ¼ nþ 1=2.
The resulting ‘‘1=2’’ difference between Eqs. (5) and (9)
(inserting R2=2 ¼ nþ 1=2) derives from the fact that we
performed an adiabatic diagonalization (imposing the
Born-Oppenheimer approximation) instead of an exact
diagonalization as is the case for (5). The Born-
Oppenheimer approximation breaks down in the vicinity
of the CI [23], and our semiclassical results are therefore
more accurate for large distances R for which the ‘‘1=2’’
term can be neglected and the two approaches agree. We
may further note that CI’s frequently appear in condensed
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matter physics, but is there more commonly referred to as
Dirac points [12].

We now turn to the more complete Rabi model (1), i.e.,
the JC model without the RWA,

Ĥ R ¼ !

�
p̂2

2
þ x̂2

2

�
þ �

2
�̂z þ 2gx̂�̂x: (10)

Applying the same phase shift transformation as for the JC

Hamiltonian, Ĥ0
R ¼ Ûð’ÞĤRÛ

�1ð’Þ, the Rabi
Hamiltonian becomes

Ĥ 0
R ¼ !

�
p̂2

2
þ x̂2

2

�
þ �

2
�̂z þ 2gðcos’x̂� sin’p̂Þ�̂x:

(11)

We have that when ’ is varied adiabatically between 0 and
2�, a localized state in phase space will encircle the origin.
Written in the traditional form of a spin-1=2 particle in an

effective magnetic field, Ĥ0
R ¼ B � �̂ (B ¼ ðBx; By; BzÞ

and �̂ ¼ ð�̂x; �̂y; �̂zÞ), it follows, since By ¼ 0, that the

B field of the Rabi model only moves within the y ¼ 0
plane. In order to cover a nonzero solid angle�ðCÞ, which
would result in a nontrivial Berry phase, the magnetic field
must contain a y component. It is exactly such a necessary
term that appears when the RWA has been applied, as is
evident from Eq. (7). This absence of a Berry phase is also

readily seen from Ĥ0
R of Eq. (11). The semiclassical

Hamiltonian is purely real and its adiabatic eigenstates
can be written j�þ

n ð�Þi ¼ cosð�2Þj2; n� 1i þ sinð�2Þj1; ni

and j��
n ð�Þi ¼ sinð�2Þj2; n� 1i � cosð�2Þj1; ni, with the x-

and p-dependent phase tanð�Þ ¼ 2ðcos�x� sin�pÞ=�. In
this gauge, the adiabatic eigenstates are purely real and the
Berry phase according to Eq. (4) must be strictly zero.
Furthermore, performing the same kind of semiclassical

investigation for the Rabi model (10) as we did for the JC
model, it is found that the adiabatic potentials

EðRÞ
� ¼ !

�
p2

2
þ x2

2

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

4
þ 4g2x2

s
(12)

do not supply any CI’s. As is demonstrated in Fig. 1(b), the
two surfaces do not intersect in a single point but along a
line determined by x ¼ 0, and consequently the Berry
phase should vanish.
In a strict sense, the above results rely on semiclassical

arguments, and in order to verify the conclusions in a more
general setting we numerically diagonalize the
Hamiltonian (11) for 0 � �< 2� and use the obtained
eigenstates to calculate the corresponding Berry phases
according to Eq. (4). For various low lying eigenstates,
the Berry phases are found to be zero regardless of pa-
rameter choices, including typical experimental parame-
ters ranging from microwave and optical cavities [2,3] to
the strong coupling regime of circuit QED [4].
Since Ref. [14], there have been a couple of proposals

for observing the vacuum induced Berry phases in cavity
QED systems [15,16]. These utilize classical driving fields
and Raman coupled schemes. In a RWA, the phase of the
classical fields can serve as the phase shift ’ needed to
form the loop C in configuration space. Let us consider the
simpler of these schemes, Ref. [15], and argue that the
resulting Berry phase is yet again an outcome of the RWA.
The two lower atomic states of a�-atom are coupled to the
excited state via a quantized cavity mode and a classical
field, respectively. If the driving fields are far detuned from
the atomic transitions, an adiabatic elimination of the
excited state render an effective two-level model and
within the RWA the phase of the classical field represents
’ in Eq. (3); see [15] for details. Now, without any RWA, in
the bare basis of the three atomic states the atom-field
interaction in the dipole approximation takes the general
form

V ¼
E1 0 � cosð#tþ ’Þ
0 E2 2gx̂

� cosð#tþ ’Þ 2gx̂ E3

2
664

3
775; (13)

where Ei is the bare energy of the ith atomic state, � the
effective field coupling between the atom and the classical
field, and # the driving frequency of the classical field. For
simplicity, let us assume E1 ¼ E2 for which the time-
dependent adiabatic energy potentials become

x

p

+-

(a)

+-

p

x

(b)

(JC)

(R)

FIG. 1. Semiclassical energy surfaces of the JC model (a) and
the Rabi model (b). The CI in (a) indicates a nonvanishing Berry
phase in this model, while absence of CI’s in (b) signals that
there are no corresponding Berry phases in the Rabi model.
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E� ¼ !

�
p2

2
þ x2

2

�
þ 1

2

�
	�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þG2

p �
;

E0 ¼ !

�
p2

2
þ x2

2

�
;

(14)

with 	 ¼ E3 � E1 and G
2 ¼ �2cos2ð#tþ ’Þ þ 4g2x2. As

in the case of the Rabi model, the three surfaces do not
possess a point of intersection, e.g., CI, and there cannot
exist a nonzero Berry phase when ’ is varied.

This far we have seen how application of the RWA may
lead to incorrect conclusions in terms of Berry phases. It
does not, however, exclude interesting geometric phase
effects in cavity QED [26–29]. In Ref. [26], a bi-modal
cavity QED system was analyzed without the RWA, and it
was found that under certain mode polarizations the model
is identical to the E� " Jahn-Teller one of molecular
physics. The corresponding Berry phase in this model
was shown to greatly affect the field properties of the
two modes [26,27]. The question regarding vacuum in-
duced Berry phases was not, on the other hand, addressed
in [26]. The corresponding Berry phases when encircling
the CI at a distance r ¼ R is [26]

�ðJTÞ
� ðRÞ ¼ ��

�
1� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ 4g2R2
p

�
: (15)

The parameter R is indirectly related to the two field
amplitudes, and for the two modes to be in vacuum it
seems plausible to identify the vacuum induced Berry

phase by letting R ! 0. This, since �ðJTÞ
� ð0Þ ¼ 0 as long

as � � 0, indicates that there are no vacuum induced Berry
phases in this model. Reference [28] considers the ground
state of the Dicke model without the RWA and with atomic
dipole-dipole interaction. They find a Berry phase strictly
zero in the normal phase (that is with the cavity mode in
vacuum), and a nonzero phase in the superradiant phase
where the field is no longer in the vacuum. Finally, we have
another study of the ground state Dicke model without the
RWA [29]. The generation of the Berry phase differs in this
work compared to [14]; the Hamiltonian is unitary trans-

formed with an atom rotation Ûatð’Þ ¼ exp½�i’Ŝz=2�
rather than a field rotation Ûð’Þ utilized above, i.e., the
Bloch vector is directly rotated. Yet again it is found that
the resulting Berry phase vanishes in the normal phase.
Thus, neither of these three works support a vacuum in-
duced Berry phase.

The remarkable aspect of our discoveries is that they are
independent of system parameters. In the majority of ex-
periments, the ratio g=! � 1which implies that the coun-
terrotating terms of the Hamiltonian is assumed to be
negligible, i.e., justifying the application of the RWA. In
the present Letter we give probably the first example where
this assumption is clearly false. We conclude that this
derives from the fact that we consider adiabatic evolution.
Similarly, the Berry connection h�ð’Þj d

d’ j�ð’Þi vanishes

in the adiabatic limit provided nondegenerate states, but
still closed line integrals of it may render a nonvanishing
Berry phase. Consequently, despite the fact that the effects
deriving from counterrotating terms may be negligible at
finite time scales, they indeed become important for adia-
batic processes.
In conclusion, we have demonstrated that imposing the

RWA in certain cavity QED systems can impart incorrect
results regardless of system parameters. Our focus was on
vacuum induced Berry phases predicted in numerous
works, and it was shown that they exactly disappear
when the RWA is not implemented. We learn from this
that utilizing RWAs (and also adiabatic elimination
schemes) must be performed with great caution when
considering Berry phases, or more general for adiabatic
scenarios. This said, our results do not exclude the exis-
tence of vacuum induced Berry phases, despite the fact that
they seem to vanish also in the settings of Refs. [26,28,29],
of which none employ any RWA, but the topic is surely
more subtle than first thought. It should be pointed out that
our analysis has been carried out for the JCmodel, which in
itself is an approximation of more realistic situations where
many degrees-of-freedom have been neglected. It might be
that the inclusion of additional cavity modes or atomic
electronic levels lead to qualitative changes in our conclu-
sions. Furthermore, since our findings seem to derive from
the adiabatic assumption, they do not forbid nonadiabatic
vacuum induced geometrical phases also for idealized
models such as the JC one. Thus, it would be especially
interesting to analyze the Aharonov-Anandan geometric
phase [11] in the Rabi model.
I acknowledge support from the Swedish research coun-

cil (VR), Kungl. Vetenskapsakademien (KVA), and
Deutscher Akademischer Austausch Dienst (DAAD).
Note added.—During the review process, I became

aware of the related works [30], which show how applica-
tion of the secular approximation for master equations may
render inconsistent results in the adiabatic limit.
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