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We theoretically study the pulse-width dependence of the photoelectron angular distribution (PAD)

from the resonance-enhanced two-photon single ionization of He by femtosecond (& 20 fs) extreme-

ultraviolet pulses, based on the time-dependent perturbation theory and simulations with the full time-

dependent Schrödinger equation. In particular, we focus on the competition between resonant and

nonresonant ionization paths, which leads to the relative phase � between the S and D wave packets

distinct from the corresponding scattering phase shift difference. When the spectrally broadened pulse is

resonant with an excited level, the competition varies with pulse width, and, therefore, � and the PAD also

change with it. On the other hand, when the Rydberg manifold is excited, � and the PAD do not much vary

with the pulse width, except for the very short-pulse regime.
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Multiphoton ionization of atoms has consistently been
receiving a great deal of attention for decades (see, e.g.,
[1–11]). The advent of intense extreme-ultraviolet (EUV)
sources such as high-harmonic generation (HHG) and free-
electron lasers (FEL) has enabled two-photon ionization
(TPI) of species with a deep ionization potential such as He
[12–16] and N2 [17]. Upon photoionization, the continuum
electron wave packet is emitted, which is a superposition of
different partial waves, each with its own orbital angular
momentum, intensity, and phase. Photoelectron angular
distribution (PAD), nowadays extensively studied by the
velocity map imaging technique (see, e.g., [18,19]), con-
tains information on the interference of these different
partial waves.

In this Letter, we theoretically study the pulse-width-
dependence of the PAD from two-photon single ionization
of He by femtosecond (fs) EUV pulses. Especially, we
focus on situations where the pulse is closely resonant
with an excited level, i.e., resonance-enhanced TPI. We
have chosen He as a target atom for the following reasons:
first, its single-electron excitation energies, e.g., 21.218 eV
for 1s2p1P and 23.087 eV for 1s3p1P [20], coincide with
the 13th and 15th harmonic photon energies of a Ti:
Sapphire laser, respectively, and also with the typical
wavelength range of EUV FELs such as the Spring-8
Compact SASE Source (SCSS) [21], the Free-electron
LASer at Hamburg (FLASH) [22], and FERMI [23].
Second, its simple electronic structure allows for exact
time-dependent numerical analysis [24–28], in great con-
trast to alkali atoms.

In the case of resonance-enhanced TPI, the resonant
ionization path via resonant levels and the nonresonant
path via nonresonant intermediate levels coexist [2]. Our
results show that in the few fs regime, the competition
between the two paths can be controlled by changing the

pulse width when the pulse is resonant with a single excited
level. The relative phase � between the different partial
waves (S and D for He) would be just the scattering phase
shift difference for nonresonant TPI and resonant (1þ 10)
TPI [18]. For the present case, on the other hand, the
ionization-path competition gives rise to an additional con-
tribution �ex. This contribution clearly manifests itself in
the PAD, and both the PAD and � vary with the pulsewidth.
When the pulse becomes so short that its spectrum gets
broader than the level spacing and resonant with multiple
levels, especially the Rydberg manifold, � is still different
from the scattering phase shift difference, but does not vary
with T. We further explore how the chaotic nature of FEL
radiation [29–33] affects the PAD. Our analysis using the
partial-coherence method [34] indicates that the PAD is
between those corresponding to the coherence time and
the mean pulse duration.
Let us first do a simple analysis on how the relative

importance of the resonant and nonresonant paths depends
on pulse width, based on the second-order time-dependent
perturbation theory within the common rotating wave ap-
proximation. The dynamic Stark effect is negligible for
pulse parameters used in the present study. We consider the
process where a laser pulse with a central frequency ! and
a pulse envelope fðtÞ, linearly polarized in the z direction,
promotes an atomic electron from an initial state jii to a
final continuum state jfi through two-photon absorption.
The complex amplitude cf of the final state after the pulse

in the interaction picture can be written as,

cf ¼
X
m

Z 1

�1
�fme

i�ftfðtÞ
�Z t

�1
�mie

i�mt
0
fðt0Þdt0

�
dt; (1)

where �mn denotes the dipole transition matrix element
between states m and n, �m ¼ !m � ð!i þ!Þ, �f ¼
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!f � ð!m þ!Þ with !m being the energy eigenvalue of

state m, and the sum runs over all the intermediate bound
and continuum states m. Although a rectangular pulse is
often assumed in previous work [2], we take, as a more

realistic choice, a Gaussian profile fðtÞ ¼ E0e
�t2=2T2

, with
E0 and T being the field amplitude and the pulse width,
respectively. For the case of !f ¼ !i þ 2!, in particular,

one can perform the integrals in Eq. (1) analytically to
obtain a physically transparent expression:

cf ¼ �E2
0T

2
X
m

�fm�mi

�
e��2

mT
2 � i

2ffiffiffiffi
�

p Fð�mTÞ
�
; (2)

where FðxÞ denotes Dawson’s integral [35], which tends
to x near the origin and 1=2x for x ! 1. Only resonant
states within the spectral width of the pulse contribute to
the first term, corresponding to the resonant path. On the
other hand, the asymptotic behavior of FðxÞ suggests that
all the intermediate states except for the exact resonance
(�m ¼ 0) participate in the second term, as expected for
nonresonant paths. While either term dominates for a
relatively long pulse (ps and ns), we can expect that the
two terms are comparative for ultrashort (� a few fs)
pulses and that their relative importance, which may be
expressed as argcf, varies with T. In such a situation, the

amplitude ratio cS=cD between the final S and D contin-
uum states is complex, since the branching ratio�Sm=�Dm

of the transitions from the intermediate P states m to each
state depends on m. While the actual outgoing wave pack-
ets involve the contribution from the final states with!f �

!i þ 2!, it is instructive to write argcS=cD using Eq. (2) as
follows:

cS
cD

¼ �Sr

�Dr

ffiffiffiffi
�

p
Te��2

rT
2 � i½aS þ 2Fð�rTÞT�ffiffiffiffi

�
p

Te��2
rT

2 � i½aD þ 2Fð�rTÞT�
; (3)

with afðf¼S;DÞ¼ ð�fr�riÞ�1
P

mð�rÞ�fm�mi=�m. Here

we have assumed that only one intermediate state r is
resonant with the pulse and that Fð�mTÞ � ð2�mTÞ�1

for all the other intermediate states. Hence, the competition
between the resonant and nonresonant paths affects the
interference between the outgoing S and D wave packets
and manifests itself in the photoelectron angular
distribution.

The photoelectron angular distribution is given by
[36],

Ið�Þ ¼ �

4�
½1þ �2P2ðcos�Þ þ �4P4ðcos�Þ�; (4)

where � is the total cross section, � is the angle between
the laser polarization and the electron velocity vector, and
�2 and �4 are the anisotropy parameters associated with
the second- and fourth-order Legendre polynomials, re-
spectively. The interference of the S and D wave packets
produces a photoelectron angular distribution proportional
to jjcSjei�0Y00 � jcDjei�2Y20j2, with �l being the phase of

the partial wave, or the apparent phase shift. Then, the
anisotropy parameters can be described by,

�2 ¼ 10

W2 þ 1

�
1

7
� Wffiffiffi

5
p cos�

�
; �4 ¼ 18

7ðW2 þ 1Þ ; (5)

where W ¼ jcS=cDj and � ¼ �0 � �2 [37]. The apparent
phase shift difference � ¼ �sc þ �ex consists of a part �sc

intrinsic to the continuum eigen wave functions (scattering
phase shift difference), which has previously been studied
both theoretically [38–40] and experimentally [18], and the
extra contribution �ex ¼ argcS=cD from the competition of
the two paths. This situation presents a contrast to the case
of the photoionization from photoexcited states [18], where
the nonresonant path is absent and only �sc is present
(� ¼ �sc).
We now verify this qualitative idea, using a direct nu-

merical solution of the full-dimensional two-electron time-
dependent Schrödinger equation (TDSE) [28]:

i
@�ðr1; r2; tÞ

@t
¼ ½H0 þHIðtÞ��ðr1; r2; tÞ; (6)

with the atomic and interaction Hamiltonian,

H0 ¼ � 1

2
r2

1 �
1

2
r2

2 �
2

r1
� 2

r2
þ 1

jr1 � r2j ; (7)

HIðtÞ ¼ ðz1 þ z2ÞfðtÞ sin!t: (8)

We solve Eq. (6) using the time-dependent close-coupling
method [24–28]. The numerically obtained excitation en-
ergies for the 1s2p1P and 1s3p1P states are 21.220 and
23.086 eV, respectively, in fair agreement with the experi-
mental values (21.218 and 23.087 eV [20], respectively).
Sufficiently after the pulse has ended, we calculate �2

and �4 by integrating the ionized part of j�ðr1; r2Þj2 over
r1, r2, �2, �1, �2, from which one obtains W and � by
solving Eq. (5). We use the values of �sc from [40] to
calculate �ex ¼ �� �sc. The calculation has been done for
a Gaussian pulse envelope with a peak intensity of
1011 W=cm2, at which we have confirmed that the inter-
action is still in the perturbative regime.
The pulse-width dependence of � and W for @! ¼

21:2 eV and @! ¼ 21:3 eV close to the 1s2p resonance
(21.218 eV) is shown in Fig. 1. The calculations have been
done at different values of full-width-at-half-maximum

(FWHM) pulse width T1=2¼2
ffiffiffiffiffiffiffi
ln2

p
T between 500 attosec-

onds (as) and 21 fs. As expected, both � and W substan-
tially changes with pulse width, especially when the pulse
is shorter than 10 fs. Accordingly, the PAD also varies as
shown in Fig. 2. One finds that the distribution to the
direction perpendicular to the laser polarization, i.e., � �
90�, 270� decreases as the pulse is shortened. This can be
understood as follows: roughly speaking, � changes from
� �

2 to�� as T1=2 varies from 21 fs to 500 as. Thus, cs=cd
is approximately real and negative in the short-pulse limit,
which leads to the cancellation between Y00ð�; ’Þ and
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Y20ð�; ’Þ around � ¼ �
2 . As stated earlier, strictly speak-

ing, Eq. (3) is applicable only to !f ¼ !i þ 2!, and the

actual PAD involves integration over!f. Nevertheless, the

results in Fig. 1 can well be described by Eq. (3) (solid lines
in Fig. 1), except for � in the ultrashort pulse regime
T1=2 & 1 fs, where the spectrum becomes broader than

the level spacing.
With increasing pulse duration, � approaches the scat-

tering phase shift difference �sc, and the PAD changes only
slowly with T1=2 (Fig. 2). When the pulse is resonant

(�rT � 1) and sufficiently long (T � aS, aD) at the

same time, assuming that the resonant excitation is not
saturated, one can approximate the extra phase shift as

�ex � ðaD � aSÞ=
ffiffiffiffi
�

p
T; (9)

hence, it is proportional to the spectral width, which can be
confirmed in Fig. 3.
On the other hand, if we plot � as a function of spectral

width (Fig. 3), � tends to an asymptotic value in the wide-
spectrum, i.e., short-pulse limit. Correspondingly, the PAD
does not change much with the pulse width for T1=2 & 1 fs
(Fig. 2). This is because the pulse becomes resonant with
multiple levels; the spacing between the 1s2p and 1s3p is
1.9 eV. Indeed, one can show that when many neighboring
states are resonantly excited by the pulse, the extra phase
shift difference �ex does not much depend on the pulse
duration. This especially applies when the photon energy
lies in the Rydberg manifold, and exceeds the ionization
potential (24.59 eV), i.e., in the case of above-threshold
two-photon ionization. In Fig. 4 we compare the pulse-
width dependence of �ex for different values of @!. While
� � �sc (�ex � 0) for nonresonant pulses (@! ¼ 20:3 eV,
T1=2 * 3:5 fs), when the pulse is close to resonance with

an excited level (@! ¼ 21:2, 21.3, and 23.0 eV), �ex rap-
idly changes with T1=2. On the contrary, �ex is nearly

constant for @! ¼ 24:3, 24.6, and 25.0 eV. At T1=2 &
2 fs, the spectrum is so broad that �ex restarts to change
slightly. One also sees that the transition across the ioniza-
tion potential is smooth. It should be pointed out that the
extra phase shift difference due to free-free transitions
plays a significant role in the recently observed time delay
in photoemission by attosecond EUV pulses [41,42].
Coherent EUV pulses considered so far may be gener-

ated by HHG sources and HHG-seeded FELs [43]. As
is well known, on the other hand, the temporal pulse
shapes of FEL operating in the self-amplified spontaneous
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FIG. 2 (color online). The pulse-width dependence of the
photoelectron angular distribution for @! ¼ 21:2 eV.
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FIG. 1 (color online). The pulse-width dependence of the
TDSE-derived apparent phase shift difference (relative phase)
� (left axis) and W ¼ jcs=cdj (right axis) for @! ¼ 21:2 eV and
21.3 eV. The thin horizontal line denotes the value (1.511 [40])
of the intrinsic scattering phase-shift difference �sc for @! ¼
21:2 eV. That for @! ¼ 21:3 eV is 1.491 [40]. Solid lines are the
results of fitting using Eq. (3).
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FIG. 3 (color online). The spectral-width dependence of the
TDSE-derived apparent phase shift difference (relative phase) �
for @! ¼ 21:2 eV. The thin horizontal line denotes the value
(1.511 [40]) of �sc. Thin dashed line plots the asymptotic
behavior Eq. (9).
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emission (SASE) mode fluctuate from shot to shot [29–33].
In order to investigate the effects of the chaotic nature, we
have performed numerical experiments for EUV pulses
randomly generated by the partial-coherence method
[34]. The obtained values of W and � for several combi-
nations of coherence time (CT) and mean pulse width
(MPW), and the corresponding PAD are shown in Table I
and Fig. 5, respectively. We can see from the table that �
and W take values between those corresponding to the CT
and the MPW in most cases. Also, the PAD is of a shape
between those for the CT and the MPW. The detailed
mechanism underlying these somewhat empirical findings
will require further investigation taking photon statistics
into account.

In summary, due to the competition between the reso-
nant and nonresonant ionization paths, the relative phase �

between the S and D photoelectron wave packets from the
resonance-enhanced two-photon ionization of He by fs
EUV pulses is different from the scattering phase shift
difference �sc which would be expected for single-photon
ionization [18] and nonresonant two-photon ionization,
and rapidly changes with the pulse width when the pulse
is resonant with an intermediate excited state and 2 fs &

T1=2 & 10 fs. Accordingly, the photoelectron angular dis-

tribution varies with T1=2 as well. Also, �ex is finite but

constant independent of T1=2 when the Rydberg manifold is

excited . Hence, the control of the competition between the
resonant and nonresonant paths in He by pulse width is a
unique feature of a-few-fs EUV pulses. The PAD is af-
fected by the chaotic nature of SASE FEL pulses, and takes
a shape between those corresponding to the coherence time
and the mean pulse width of the pulses. The results of the
present study stress the importance of the account of the
nonresonant paths in the interpretation of resonant two-
photon, single- or two-color, ionization experiments by
state-of-the-art ultrashort EUV sources.
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TABLE I. W and � calculated for chaotic pulses generated by
the partial-coherence method for several pairs of coherence time
and mean pulse width. The average values and standard devia-
tion errors of W and � by 48 runs are listed. The rows with the
same CT and MPW values are for fully coherent pulses as in
Figs. 1 and 4.

@! (eV) CT (fs) MPW (fs) W �

21.2 2 5 1:31� 0:08 2:03� 0:04
2 7 1:42� 0:09 1:91� 0:04
3.5 7 1:49� 0:09 1:87� 0:03
2 2 1.05 2.26

3.5 3.5 1.41 2.05

5 5 1.57 1.92

7 7 1.67 1.81

23.0 2 7 0:645� 0:061 2:14� 0:08
3.5 7 0:890� 0:058 2:15� 0:06
2 2 0.464 2.71

3.5 3.5 0.679 2.45

7 7 1.08 2.10
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FIG. 5 (color online). Photoelectron angular distribution by
chaotic pulses for @! ¼ 21:2 eV and three pairs of (CT)-
(MPW) indicated in the legend.
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FIG. 4 (color online). Pulse-width dependence of �ex for dif-
ferent values of photon energy. The resonant excitation energies
for 1s2p1P, 1s3p1P, 1s4p1P, 1s5p1P levels are 21.218, 23.087,
23.742, and 24.046 eV [20].
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