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Quantum contextuality, as proved by Kochen and Specker, and also by Bell, should manifest itself in

any state in any system with more than two distinguishable states and recently has been experimentally

verified. However, for the simplest system capable of exhibiting contextuality, a qutrit, the quantum

contextuality is verified only state dependently in experiment because too many (at least 31) observables

are involved in all the known state-independent tests. Here we report an experimentally testable inequality

involving only 13 observables that is satisfied by all noncontextual realistic models while being violated

by all qutrit states. Thus our inequality facilitates a state-independent test of the quantum contextuality for

an indivisible quantum system. We also provide a record-breaking state-independent proof of the Kochen-

Specker theorem with 13 directions determined by 26 points on the surface of a magic cube.
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It is believed, almost religiously, that every effect has its
own cause and the same cause shall lead to the same effect.
The predictions of quantum mechanics (QM) are however
probabilistic and the effect that different outcomes appear
in different runs of a measurement seems to have no
definite cause. Einstein, Podolsky, and Rosen [1] initiated
a long-lasting quest for a quantum reality by questioning
the completeness of quantum mechanics. Hidden variable
(HV) models are introduced in order to explain why a
certain outcome appears in each run of a measurement,
attempting to make QM complete. Years later Kochen and
Specker (KS) [2] and Bell [3] discovered that quantum
mechanics can be completed only by a hidden variable
model that is contextual: the outcome of a measurement
depends on which compatible observable might be mea-
sured alongside. Simply put, the Kochen-Specker theorem
states that noncontextual HV models cannot reproduce
all the predictions of QM, or quantum mechanics is
contextual.

In any noncontextual HV model all observables have
definite values determined only by some HVs � that are
distributed according to a given probability distribution %�

with normalization
R
d�%� ¼ 1. Two observables are

compatible if they can be measured in a single experimen-
tal setup and a maximal set of mutually compatible ob-
servables defines a context. Noncontextuality is a typical
classical property: the value of an observable revealed by a
measurement is predetermined by HVs � only regardless
of which compatible observable might be measured
alongside. Local realism is a form of noncontextuality
enforced by the locality, and thus Bell’s inequalities [4]
are a special form of KS inequalities [5–9], experimentally
testable inequalities that are satisfied by all noncontextual
HV models, some of which have been tested in recent

experiments [10–18]. In general KS inequalities reveal
the nonclassical nature of single systems demanding nei-
ther spacelike separation nor entanglement, i.e., indepen-
dent of state.
However, for the simplest system capable of exhibiting

the quantum contextuality, a qutrit, only a state-dependent
verification has been made in a recent experiment [18].
This is because all the known state-independent KS in-
equalities for a qutrit [9] are based on the proofs of the KS
theorem and involve too many observables to be tested
practically. For example, the original KS proof involves
117 rays [2] and the number of rays is reduced to 33 by
Peres [19] and Schuttle as reported by Svozil in 1994 and
pointed out by Bub [20]. The best KS proof known so far,
due to Conway and Kochen [21], still involves 31 rays.
Also there are many state-dependent KS proofs among
which a 5-ray proof [7] has been used in the recent
state-dependent experimental verification of quantum con-
textuality for a qutrit. In this Letter we report a state-
independent proof of the KS theorem for a qutrit with
only 13 directions. Based on this proof we propose an
experimental testable inequality that involves only 13 ob-
servables and two observable correlations and is satisfied
by all noncontextual HV models while being violate by all
qutrit states. Thus our inequality will make a state-
independent test of quantum contextuality for an indivis-
ible system practical.
How can we exclude noncontextual HV models for QM

or prove the quantum contextuality? The answer depends
on what kinds of quantum mechanical predictions we want
the HV model to reproduce. For example, if we only want
the predictions on nonsequential measurements to be re-
produced, then a noncontextual HV model does exist ac-
cording to Kochen and Specker [2]. Because of this toy
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model Kochen and Specker imposed a rather strong con-
straint on the HV models as a way out [2]: the algebraic
structure of compatible observables must be preserved.
That is to say the value assigned to the product or the
sum of two compatible observables must be equal to the
product or the sum of the values assigned to these two
compatible observables, which will be referred to as the
product rule and the sum rule, respectively. As we shall see
later this constraint can be lifted if we consider sequential
measurements.

In what follows we shall slightly abuse the notation of a
ray to represent both a vector in the projective Hilbert
space and a normalized rank-1 projector on the ray since
they are in a one-to-one correspondence. As a result of the
product rule the value assigned to the product of two
orthogonal rays, which are compatible, must be zero. As
a result of the sum rule there is one and only one ray that is
assigned to value 1 among all the rays in a complete
orthonormal basis since the identity is always assigned to
value 1. Thus in every noncontextual HV model preserving
the partial algebraic structure of compatible observables
there exists a KS value assignment to all rays in the
corresponding Hilbert space satisfying the following:
(1) The value f0; 1g assigned to a ray is independent of
which bases it finds itself in, and (2) one and only one ray is
assigned to value 1 among all the rays in a complete
orthonormal basis. The first condition reflects the noncon-
textuality and the second condition arises from the require-
ment that the algebraic structure of compatible observables
be preserved. For a Hilbert space of a dimension greater
than 2 there always exists a finite set of rays to which the
KS value assignment is impossible. In addition to various
KS proofs for qutrits [2,19,20], the 18-ray proof in four
dimensions due to Cabello, Estebaranz, and Garcı́a-
Alcaine [22] is the smallest state-independent KS proof
known so far.

First let us present a state-independent proof of the KS
theorem for a qutrit using only 13 rays. In a given basis
fj0i; j1i; j2ig each ray r ¼ ða; b; cÞ is in a one-to-one
correspondence to a normalized rank-1 qutrit projector
r̂¼jrihrj=hrjri in which jri¼aj0iþbj1iþcj2i. Con-
sider the following 13 rays

y�1 ¼ ð0; 1;�1Þ h1 ¼ ð�1; 1; 1Þ z1 ¼ ð1; 0; 0Þ
y�2 ¼ ð�1; 0; 1Þ h2 ¼ ð1;�1; 1Þ z2 ¼ ð0; 1; 0Þ
y�3 ¼ ð1;�1; 0Þ h3 ¼ ð1; 1;�1Þ z3 ¼ ð0; 0; 1Þ
yþ1 ¼ ð0; 1; 1Þ h0 ¼ ð1; 1; 1Þ
yþ2 ¼ ð1; 0; 1Þ
yþ3 ¼ ð1; 1; 0Þ (1)

that are determined by 26 points on the surface of a 3� 3
magic cube as illustrated in Fig. 1. If we regard those 13
rays as 13 vertices and link two vertices if and only if the
corresponding rays are orthogonal, then we obtain the

orthogonality graph �13 as shown in Fig. 2. Obviously a
given set of rays determines uniquely the orthogonality
graph and usually not vice versa. However, those 13 rays
are determined uniquely by the orthogonality relationships
specified by the graph �13 up to a global unitary
transformation.
In fact, without loss of generality we can choose zk as in

Eq. (1) since they form a basis. Because fzk; y�k g are

mutually orthogonal for each k ¼ 1; 2; 3 there exist non-
zero t1; t2; t3 such that y

þ
1 ¼ ð0; t1; 1Þ and y�1 ¼ ð0;�1; t�1Þ,

yþ2 ¼ ð1; 0; t2Þ and y�2 ¼ ðt�2; 0;�1Þ, yþ3 ¼ ðt3; 1; 0Þ and

y�3 ¼ ð�1; t�3; 0Þ. As a result we have h1 ¼ ð�t�2; t1; 1Þ,
h2 ¼ ð1;�t�3; t2Þ, and h3 ¼ ðt3; 1;�t�1Þ. Since hk is or-

thogonal to yþk�1 for k ¼ 1; 2; 3, we have t�1 ¼ t2t3, t
�
2 ¼

t1t3, and t�3 ¼ t1t2 from which it follows that jtkj ¼ 1 and

t1t2t3 ¼ 1, i.e., tk ¼ eið�kþ1��kþ2Þ for some real �k. Finally
we obtain h0 ¼ ðei�1 ; ei�2 ; ei�3Þ which is orthogonal to
y�1;2;3. The diagonal unitary transformation taking h0 to

ð1; 1; 1Þ leaves zk unchanged so that the standard form of
13 rays in Eq. (1) is obtained.

FIG. 1 (color online). Illustration of 13 directions that are
determined by 26 points on the surface of a 3� 3 magic cube.

FIG. 2. The orthogonality relationships among the 13 rays in
Eq. (1) determine a graph �13 with 13 vertices (hollow dots)
representing the 13 rays and edges, straight or curved, linking
two rays that are orthogonal.
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The KS value assignments to the 13-ray set are possible;
i.e., no logical contradiction can be extracted by consider-
ing conditions 1 and 2 only. However, in any possible KS

value assignment there is at most one ray among fĥ�j� ¼
0; 1; 2; 3g that can be assigned to value 1. Suppose that this

is not true; i.e., there are two or more ĥ� that are assigned
to value 1. Because of the symmetry of the graph �13 as
shown in Fig. 2, we need only to consider the following

two cases: (i) If ĥ0 and ĥ1 are assigned to value 1 then ŷ�2
and ŷ�3 must be assigned to 0 so that both ẑ2 and ẑ3 must be

assigned to value 1 which is impossible, and (ii) if ĥ1 and

ĥ2 are assigned to 1 then ŷ�1 and ŷ�2 must be zero so that
both ẑ1 and ẑ2 must be assigned to value 1, also a contra-
diction. In the reasonings abovewe have taken into account
condition 2 which demands that linked rays not be assigned
simultaneously to value 1 and in a triangle one and only
one ray be assigned to value 1. A set of eight rays in each

case considered above, e.g., ĥ0;1, z2;3, and y�2;3, constitutes
in fact a 3-box paradox [23] which also appears in
Cliffton’s state-dependent proof of the KS theorem [24]
and a recent proposal to close the compatibility loopholes
[25], in addition to its first use in the 117-ray proof [2].

Denoting by h�� 2 f0; 1g the value assigned to ĥ� for
given �, we have

P
�h

�
� � 1 from the above arguments. As

a result the following inequality

X3
�¼0

hĥ�ic :¼
X3
�¼0

Z
d�%�h

�
� � 1 (2)

must be satisfied by all noncontextual HV models that
admit a KS value assignment. However, the quantum me-

chanics predicts
P

3
�¼0hĥ�iq ¼ 4=3 due to the identityP

3
�¼0 ĥ� ¼ 4

3 I with I being the identity operator of qutrit

(see the Appendix). This proves the original KS theorem:
the noncontextual HV model satisfying conditions 1 and 2
cannot reproduce all the predictions of QM.

Usually the KS theorem is proved by finding a set of rays
to which the KS value assignment does not exist so that we
need not check other predictions of QM. Our proof here is a
set of 13 rays, to which all possible KS value assignments,
which do exist, fail to reproduce a certain prediction of
QM. Notably the inequality Eq. (2), involving only 4 ob-
servables explicitly, provides a state-independent test for
the noncontextual HV models that preserve the algebraic
structure of compatible observables, in the spirit of Kochen
and Specker. In an experimental test of the inequality
Eq. (2) each average must be measured on different sub-
ensembles prepared in the same state, similar to a standard
test of a Bell inequality as pointed out by Cabello [8].

It turns out that the requirement of preserving the algebraic
structure, i.e., the product and sum rules, of compatible
observables is too strong and unnecessary. Peres noticed
that the sum rule can be abandoned and kept the product
rule [26] as in the KS proofs via the Mermin-Peres square
[19,27] for 2 qubits and Mermin’s pentagram [27] for 3

qubits. However, the product rule is not necessary either.
Insteadwe only need to require that the quantum correlations
of compatible observables, the quantum mechanical predic-
tions on sequential measurements, be reproduced. This im-
poses no additional constraints on the noncontextual HV
models since they must reproduce all the predictions of
QM in the first place. As noticed earlier, the toy model by
Kochen and Specker did not take into account the quantum
correlations of compatible observables.
Indeed every KS proof mentioned previously can be

turned into a state-independent KS inequality [9] that is
obeyed by all noncontextual HV models, no matter whether
the algebraic structure of compatible observables is pre-
served or not. All known state-independent KS inequalities
involve the correlations of at least three compatible observ-
ables; i.e., predictions on three or more sequential measure-
mentsmust be reproduced by theHVmodels. In the case of a
qutrit the resulting KS inequalities involve too many observ-
ables, e.g., at least 31, to be tested experimentally. Recently
Klyachko et al. [7] proposed a simple KS inequality, called a
pentagram inequality since it is based on the graph of a
pentagon, to test noncontextual HVs with only 5 dichotomic
observables and correlations of two compatible observables.
However, this pentagram inequality, which is based on the
assumption of noncontextuality only andwhoseviolation has
been verified in a recent experiment [18], has a drawback of
being state dependent.
Our state-independent inequality is based on the or-

thogonality graph �13 as shown in Fig. 2. We denote by
V ¼ fy�k ; h�; zkjk ¼ 1; 2; 3;� ¼ �;� ¼ 0; 1; 2; 3g its ver-
tex set and by � its adjacency matrix which is a 13� 13
symmetric matrix with vanishing diagonal elements.
And �uv ¼ 1 if two vertices u; v 2 V are neighbors and
�uv ¼ 0 otherwise. For arbitrary 13 variables av ¼ �1
with v 2 V it holds

X
v2V

av � 1

4

X
u;v2V

�uvauav � 8; (3)

which can be easily verified with the help of a computer by
exhausting all 213 possibilities and an analytic proof is
provided in the Appendix. Let fAvjv 2 Vg be a set of 13
dichotomic observables taking values a�v ¼ �1 for given
�. Then from inequality Eq. (3) we obtain our magic-cube
inequality

X
v2V

hAvic � 1

4

X
u;v2V

�uvhAuAvic � 8; (4)

where we have denoted hAvic :¼
R
d�%�a

�
v and

hAuAvic :¼
R
d�%�a

�
ua

�
v. Though the correlation of two

observables is always well defined in a noncontextual HV
model regardless of whether they are compatible or not, in
order to compare with the predictions of QM those observ-
ables labeled with linked vertices in the orthogonality
graph �13 should be compatible (commuting) so that their
correlation is also well defined in QM.
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Fortunately if we define 13 observables Âv ¼ I � 2r̂v
from 13 rays r̂v 2 fŷ�k ; ĥ�; ẑkg, then Âu and Âv are com-

muting, i.e., compatible, whenever two vertices u; v 2 V
are linked, i.e., �uv ¼ 1. Therefore all the expectation
values appear on the left-hand side of Eq. (4) are also
well defined in QM and therefore should be reproduced.
Because of the linearity of QM the left-hand side of Eq. (4)
must reproduce the expectation value of

L̂ ¼ X
v2V

Âv � 1

4

X
u;v2V

�uvÂuÂv: (5)

Simple calculations yield L̂ ¼ 25
3 I and therefore hL̂iq ¼

25=3> 8 for any qutrit state, meaning that the magic-cube
inequality Eq. (4) is violated by all qutrit states. Thus we
have proved in a state-independent fashion that no non-
contextual HV model, no matter whether the algebraic
structure of compatible observables is preserved or not,
can reproduce all the predictions of QM, especially those
quantum correlations of two compatible observables, by
using only 13 observables.

To summarize, our magic-cube inequality Eq. (4) pro-
vides the simplest state-independent proof of quantum
contextuality. Firstly, it is a test for the contextuality for
an indivisible system capable of exhibiting the quantum
contextuality, i.e., smallest system. Secondly, it involves
the smallest number of observables so far and we conjec-
ture that the KS theorem does not have a state-independent
proof with less than 13 rays. Thirdly, only correlations of at

most two, the smallest number, of compatible observables
are involved. In comparison correlations of at least three
compatible observables are involved in all the state-
independent tests of contextuality known so far. If we
impose a minimal requirement on the noncontextual HV
models, i.e., only the correlations of at most two compat-
ible observables are required to be reproduced, then our
magic-cube inequality will be the first state-independent
proof of the KS theorem in this case. We believe that there
are also proofs of the KS theorem for higher dimensional
systems that involve only two observable correlations.
Finally, we have proved the KS theorem by finding a 13-
ray set, which is the smallest state-independent proof so
far, for which all possible KS value assignments, which do
exist, fail to reproduce a certain prediction of QM. Since
only a relatively small number of observables and correla-
tions of only two compatible observables are involved, an
experimental test of our inequality is well within the reach
of current technologies. We believe that the nitrogen-
vacancy center in diamond [28] should be a promising
choice to test our inequality.
This work is supported by National Research

Foundation and Ministry of Education, Singapore (Grant
No. WBS: R-710-000-008-271) and NSF of China (Grant
No. 11075227).
Appendix.—
Explicit normalized rank-1 projectors corresponding to

13 rays in Eq. (1): By denoting �1 ¼ �1 we have

ŷ�1 ¼ 1

2

0 0 0

0 1 �1

0 �1 1

0
BB@

1
CCA; ŷ�2 ¼ 1

2

1 0 �1

0 0 0

�1 0 1

0
BB@

1
CCA; ŷ�3 ¼ 1

2

1 �1 0

�1 1 0

0 0 0

0
BB@

1
CCA;

ĥ0 ¼ 1

3

1 1 1

1 1 1

1 1 1

0
BB@

1
CCA; ĥ1 ¼ 1

3

1 �1 �1

�1 1 1

�1 1 1

0
BB@

1
CCA; ĥ2 ¼ 1

3

1 �1 1

�1 1 �1

1 �1 1

0
BB@

1
CCA; ĥ3 ¼ 1

3

1 1 �1

1 1 �1

�1 �1 1

0
BB@

1
CCA;

ẑ1 ¼
1 0 0

0 0 0

0 0 0

0
BB@

1
CCA; ẑ2 ¼

0 0 0

0 1 0

0 0 0

0
BB@

1
CCA; ẑ3 ¼

0 0 0

0 0 0

0 0 1

0
BB@

1
CCA; I ¼

1 0 0

0 1 0

0 0 1

0
BB@

1
CCA:

Thus we have identities

ŷ :¼ X3
k¼1

X
�¼�

ŷ�k ¼ 2I; ĥ :¼ X3
�¼0

ĥ� ¼ 4

3
I;

ẑ :¼ X3
k¼1

ẑk ¼ I:

(A1)

Let Âv ¼ I � 2r̂v with r̂v 2 fŷ�k ; ĥ�; ẑkg. Since 24 ¼P
u;v2V�uv=2 is the number of the edges in �13,P
u2V�uv is the degree of the vertex v, and r̂vr̂u ¼ 0 if

�uv ¼ 1, it holds

L̂ ¼ X
v2V

Âv � 1

4

X
u;v2V

�uvÂuÂv

¼ 13I � 2ðŷþ ĥþ ẑÞ � I

4

X
uv

�uv þ
X
uv

�uvr̂v

� X
u;v2V

�uvr̂ur̂v

¼ 13I � 2ðŷþ ĥþ ẑÞ � 12I þ 4ðẑþ ŷÞ þ 3ĥ

¼ I þ 2ðẑþ ŷÞ þ ĥ ¼ 25

3
I: (A2)
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Proof of Eq. (4).—There are 9 vertices fzk; y�k g of degree
4 and 4 vertices fh�g of degree 3 in �13, where the degree

of a vertex denotes the number its neighbors. Let t be the
total number of av that take value �1, f the number of av
that take value �1 with v being of degree 4, and l the
number of pairs of vertices u; v such that au ¼ av ¼ �1
and �uv ¼ 1. We then have L ¼ 1þ tþ f� 2l. Since the
quadratic term in L is unchanged under replacements
av � �av, we need only to consider t � 6. If t � 3, since
l � 0 and f � t, then we have L � 7. If t ¼ 4, then from
f� 2l � 3 since it is impossible to have f ¼ 4 and l ¼ 0,
i.e., among any 4 vertices of degree 4 there is at least a
connected pair, it follows L � 8, which is attained when
f ¼ 3 and l ¼ 0, e.g., z1, y

�
2 , y

þ
3 , and h3. In the case

of t ¼ 5, if f ¼ 5 then l � 2 so that L � 7. If f � 4
then l � 1 so that L � 8, which is attained by, e.g.,
z1, y

�
2 , y

þ
3 , y

�
1 , and h3. In the case of t ¼ 6, if f ¼ 6

then l � 3 so that L � 7; if 2 � f � 5 then we have again
L � 8 because l � 2; if f ¼ 1 then L � 7 since l � 0.
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[16] E. Amselem, M. Rådmark, M. Bourennane, and A.

Cabello, Phys. Rev. Lett. 103, 160405 (2009).
[17] O. Moussa, C. A. Ryan, D. G. Cory, and R. Laflamme,

Phys. Rev. Lett. 104, 160501 (2010).
[18] R. Lapkiewicz et al., Nature (London) 474, 490 (2011).
[19] A. Peres, J. Phys. A 24, L175 (1991).
[20] J. Bub, Found. Phys. 26, 787 (1996).
[21] J. H. Conway and S. Kochen (unpublished); A. Peres,

Quantum Theory: Concepts and Methods (Kluwer,
Dordrecht, 1993), p. 114; see also J. H. Conway and S.
Kochen, in Quantum [Un]speakables: From Bell to
Quantum Information, edited by R.A. Bertlmann and A.
Zeilinger (Springer-Verlag, Berlin, 2002), p. 257.

[22] A. Cabello, J.M. Estebaranz, and G. Garcı́a-Alcaine,
Phys. Lett. A 212, 183 (1996).

[23] D. Z. Albert, Y. Aharonov, and S. D’Amato, Phys. Rev.
Lett. 54, 5 (1985).

[24] R. Clifton, Am. J. Phys. 61, 443 (1993).
[25] A. Cabello and M. T. Cunha, Phys. Rev. Lett. 106, 190401

(2011).
[26] A. Peres, Phys. Lett. A 151, 107 (1990).
[27] N. D. Mermin, Phys. Rev. Lett. 65, 3373 (1990).
[28] J. R. Maze et al., New J. Phys. 13, 025025 (2011).

PRL 108, 030402 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

20 JANUARY 2012

030402-5

http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/RevModPhys.38.447
http://dx.doi.org/10.1103/PhysRevLett.86.4427
http://dx.doi.org/10.1103/PhysRevLett.86.4427
http://dx.doi.org/10.1209/epl/i2002-00444-0
http://dx.doi.org/10.1103/PhysRevLett.101.020403
http://dx.doi.org/10.1103/PhysRevLett.101.210401
http://dx.doi.org/10.1103/PhysRevLett.103.050401
http://dx.doi.org/10.1103/PhysRevLett.84.5457
http://dx.doi.org/10.1103/PhysRevLett.84.5457
http://dx.doi.org/10.1103/PhysRevLett.90.250401
http://dx.doi.org/10.1103/PhysRevLett.97.230401
http://dx.doi.org/10.1103/PhysRevLett.103.040403
http://dx.doi.org/10.1103/PhysRevA.80.044101
http://dx.doi.org/10.1038/nature08172
http://dx.doi.org/10.1038/nature08172
http://dx.doi.org/10.1103/PhysRevLett.103.160405
http://dx.doi.org/10.1103/PhysRevLett.104.160501
http://dx.doi.org/10.1038/nature10119
http://dx.doi.org/10.1088/0305-4470/24/4/003
http://dx.doi.org/10.1007/BF02058633
http://dx.doi.org/10.1016/0375-9601(96)00134-X
http://dx.doi.org/10.1103/PhysRevLett.54.5
http://dx.doi.org/10.1103/PhysRevLett.54.5
http://dx.doi.org/10.1119/1.17239
http://dx.doi.org/10.1103/PhysRevLett.106.190401
http://dx.doi.org/10.1103/PhysRevLett.106.190401
http://dx.doi.org/10.1016/0375-9601(90)90172-K
http://dx.doi.org/10.1103/PhysRevLett.65.3373
http://dx.doi.org/10.1088/1367-2630/13/2/025025

