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A molecular dynamics computer simulation of a glass-forming Yukawa mixture is used to study the

anisotropic dynamics of a single particle pulled by a constant force. Beyond linear response, a scaling

regime is found where a force-temperature superposition principle of a Peclet number holds. In the latter

regime, the diffusion dynamics perpendicular to the force can be mapped on the equilibrium dynamics in

terms of an effective temperature, whereas parallel to the force a superdiffusive behavior is seen in the

long-time limit. This behavior is associated with a hopping motion from cage to cage and can be

qualitatively understood by a simple trap model.
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Introduction.—In active microrheology [1–4], the re-
sponse of a tagged particle to an external force f is inves-
tigated. The steady-state motion of the tagged particle is
characterized by an average constant velocity v that is
related to f by a friction coefficient � via � ¼ f=v [5].
When the force f is sufficiently weak, the steady-state
motion of the particle follows linear response theory which
predicts a simple relationship between the equilibrium
diffusion constant D of the tagged particle and the friction
coefficient, D� ¼ kBT (with kB the Boltzmann constant
and T the temperature). In glass-forming liquids [6,7]
relatively small forces f suffice to observe a nonlinear
response of the pulled particle. This has been shown in
recent microrheological experimental studies of colloidal
systems [8–10] as well as simulation and mode-coupling
theory [11–15]. However, it remains unclear how the dif-
fusion dynamics of the pulled particle changes with respect
to the linear response behavior.

In this Letter, we address this issue using a molecular
dynamics simulation of a glass-forming soft-sphere mix-
ture. Deviations from linear response of the pulled particle
can be quantified by a Peclet number Pe� that compares the
diffusive time scale at equilibrium with the time scale due
to the external force. At intermediate values of Pe� (beyond
linear response) a scaling regime is found where a force-
temperature superposition principle holds. The diffusion
dynamics in the latter scaling regime exhibits strong an-
isotropies: In the direction perpendicular to the force, the
long-time motion of the pulled particle is diffusive and the
diffusion coefficient can be mapped onto the equilibrium
diffusion coefficient in terms of an effective temperature.
In contrast, in the direction parallel to the force a super-
diffusive behavior is found at long times and the diffusion
coefficient does not exist. This finding challenges the
relation between active microrheology and macrorheology
[3,16,17] as far as the nonlinear response in glass-forming
liquids is concerned. In macrorheological experiments of

glass-forming liquids under shear, only weak anisotropies
are found in the (diffusion) dynamics [18,19] and there is
no problem with the nonexistence of transport coefficients.
The anisotropic diffusion dynamics of the pulled particle

in the nonlinear scaling regime is associated with a hop-
ping motion from cage to cage: the particle is localized for
some time in a cage formed by the surrounding particles
before it quickly moves to the next cage. Whereas in the
cage the motion of the particle exhibits only small anisot-
ropies, it becomes strongly anisotropic with respect to the
motion out of the cages. An essential feature for the motion
of the particle in the direction of force is a broad waiting
time distribution. We argue below that the dynamics of the
pulled particle can be qualitatively understood in terms of
an asymmetric hopping model [20,21].
Details of the simulation.—We consider a glass-forming

Yukawa fluid which consists of an equimolar mixture
of A and B particles. Thus, interactions between the
particles are given by the pair potential V��ðrÞ ¼
"��d�� exp½��ðr� d��Þ�=r, with r the distance between

a particle of type � and one of type � (�, � ¼ A, B). The

functions V��ðrÞ are truncated at a cutoff distance r��c
defined by V��ðr ¼ r��c Þ ¼ 10�7"AA. The parameters of

the potential are chosen as follows: d � dAA ¼ 1:0, dBB ¼
1:2d, and dAB ¼ 1:1d for the particle diameters, " �
"AA ¼ 1:0, "BB ¼ 2:0", and "AB ¼ 1:4" for the energy
parameters, and �AA ¼ �AB ¼ �BB ¼ 6=d for the screen-
ing parameters. With these parameters, neither crystalliza-
tion nor phase separation can occur on the time scale of our
simulations. The critical temperature Tc of a mode-
coupling analysis at the number density � ¼ 0:68 (consid-
ered in this work) is Tc � 0:14.
Two different system geometries with periodic boundary

conditions are used. The smaller system has cubic shape
with linear size L ¼ 13:3d and 1600 particles (i.e., 800 of
each type). The second system geometry is elongated by
the factor of 8 in force direction, Lx ¼ 8L, Ly ¼ Lz ¼ L,
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which allows longer simulation runs for large forces (in the
latter case longer runs are required to avoid finite size
effects due to the periodic boundary conditions). All simu-
lation runs start with fully equilibrated configurations in
the temperature range 0:34 � T � 0:14. During the pro-
duction runs a constant force fwith 0:5 � f � 20 (in units
of kBT=d) was applied to one of the particles in the system.
These simulations were done for 100 000 to 3� 106 time
steps and were repeated for around 1000 different particles.
A dissipative particle dynamics thermostat [22] was ap-
plied to keep the temperature constant (for details see
Refs. [19,23]).

Results.—In the steady state, a particle pulled by a
constant force f in x direction moves with a constant
velocity v such that f ¼ �v. The friction coefficient � as
a function of f is displayed in Fig. 1(a) for A particles and
different temperatures T. Here and in the following, we
show only the results for pulled A particles, because the

behavior of the B particles is similar. Three different force
regimes can be inferred from the figure: Toward small f,
the linear response regime is approached and � is constant.
The nonlinear regime at intermediate f is characterized by
a decrease of � with increasing f, while for very large
forces the friction coefficient becomes constant and inde-
pendent of temperature. A detailed discussion of the latter
‘‘force-dominated’’ regime can be found in Refs. [14,15]
and shall not be further considered here.
In order to quantify the effect of the external force f in

terms of a dimensionless number, we define a Peclet num-
ber [8,13] by Pe� ¼ �D

�f
, with �D the time scale of the

equilibrium diffusion (i.e., for f ¼ 0) and �f that is set

by the external force f. �D can be expressed as the time for
which a particle diffuses a distance equal to its diameter �,

�D ¼ �2=Deq, with Dð�Þ
eq the self-diffusion constant in

equilibrium. �f is the time the particle drifts with velocity

v over the distance �, �f ¼ �=v ¼ ��=f. With the scaled

force fscal ¼ f�=ðkBTÞ and the ‘‘Einstein’’ friction �0 ¼
kBT=Deq the Peclet number can be written as Pe� ¼
�0fscal=�. In the linear response regime, � ¼ �0 holds
and thus, in this case, Pe� is equal to fscal.
Figure 1(b) shows Pe� for A particles and different

temperatures as a function of fscal. At the highest tempera-
ture, T ¼ 1:0, almost no deviations from linear response
are seen up to the high force regime (where Pe� � 20).
With decreasing temperature, the linear response regime
shifts to smaller values of f. For low temperature T ¼
0:14, the aforementioned nonlinear regime of intermediate
forces corresponds to Pe� numbers in the range from about
10 to 1000. In the intermediate regime of Peclet numbers a
force-temperature superposition principle holds, as dem-
onstrated in the inset of Fig. 1(b). Here, we have plotted

Pe� as a function of fscal=f
Pe�¼50
scal with fPe

�¼50
scal the value of

fscal at Pe
� ¼ 50 for a given temperature. Obviously, the

data for the different temperature fall onto a master curve
at intermediate Pe� numbers.
The latter scaling regime marks the values of Pe� num-

bers where, at given temperature and force, the motion of
the pulled particle is strongly affected by the specific
properties of the cages formed by the surrounding parti-
cles. In contrast, at very high values of f the nonlinear
response of the pulled particle is independent of tempera-
ture and force and thus of the details of the cages. In the
following, we focus on the force-temperature superposi-
tion principle regime at the temperature T ¼ 0:14. We
shall see that the dynamics of the tagged particle is strongly
anisotropic in the long-time limit whereas at intermediate
times the motion of the particle in the cage is similar in the
directions parallel and perpendicular to f.
A simple quantity to analyze the diffusive transport

of a tagged particle is the mean-squared displace-
ment (MSD). For the directions perpendicular to the
force (y and z direction), the MSD is defined by
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FIG. 1 (color online). (a) Friction coefficient � for A particles
and different temperatures T as function of force f. (b) Modified
Peclet number Pe� for A particles as function of the scaled force
fscal for different temperatures T. The solid line indicates the
linear response regime where Pe� ¼ fscal holds. The inset shows
Pe� as function of fscal=f

Pe�¼50
scal (see text).
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h�y2ðtÞ þ �z2ðtÞi � h½yðtÞ � yð0Þ�2 þ ½zðtÞ � zð0Þ�2i. In
Fig. 2(a), these MSDs are displayed in a double-
logarithmic plot for different forces at the temperature
T ¼ 0:14. Note that we have multiplied the MSDs by
3=2 to allow for a direct comparison to the equilibrium
MSD (f ¼ 0:0). As Fig. 2(a) indicates, the external drive
leads to a faster diffusive motion of the particle in the
orthogonal direction.

At long times, the MSDs are linear in time as can be
inferred from the inset of Fig. 2(a) where these functions
are divided by t. In the long-time limit this is directly
related to the self-diffusion constant Dorth ¼
limt!1h�y2ðtÞ þ �z2ðtÞi=ð4tÞ. The logarithm of Dorth for
different forces in comparison to equilibrium (f ¼ 0) is
shown in Fig. 2(b) as a function of an inverse effective

temperature, 1=Teff . Here, Teff is obtained by
force-dependent rescaling of temperature T via Teff ¼
CðfÞT. The function CðfÞ was determined such that at
least at low temperatures all the data for the different forces
superimpose onto Deq. The force dependence of Teff=T �
1 is shown in the inset of Fig. 2(b). It can be well described
by a quadratic function of f, Teff=T � 1 ¼ CðfÞ � 1 ¼
0:0322� f2, as predicted recently by a mean-field theory
for Brownian particles in the presence of a strong external
force [24].
Also shown in Fig. 2(b) is the self-diffusion coefficient

Dshear for the sheared Yukawa system applying the constant
shear rate _� ¼ 3:0� 10�3 (from our previous simulation
study [19], where also a direct comparison to experiment
was performed, showing that we access the relevant regime
of Pe numbers). Here, only the self-diffusion coefficient in
shear direction is shown since Dshear in shear and vorticity
direction exhibits a similar temperature dependence and
differs only by a small amount. Obviously, at low tempera-
tureDshear depends very weakly on temperature, as opposed
to the behavior of the microrheological counterpart, Dorth.
The mean-squared displacement in force direction,

h�x2ðtÞi � h�xðtÞi2, exhibits a different behavior from
that in the orthogonal direction. Note that the term
h�xðtÞi2 � h½xðtÞ � xð0Þ�i2 has to be subtracted in the lat-
ter formula in order to correct for the drift of the particle
due to the external force. Also h�x2ðtÞi indicates an accel-
eration of the dynamics with increasing f, but now the
MSD exhibits a superlinear behavior in the long-time
regime (Fig. 3), h�x2ðtÞi / t� with � varying between
about 1.3 and 1.45, as indicated by the solid lines. Thus,
the diffusion is anomalous in x direction and the self-
diffusion coefficient does not exist in this case [note that
all the considered values of f at T ¼ 0:14 are beyond the
linear response regime, cf. Fig. 1(b)].
The inset of Fig. 3 shows a comparison between the

MSD in parallel and in the orthogonal direction for the
force f ¼ 1:5. Both MSDs exhibit a ballistic regime at
short times (/ t2) and a plateau region at intermediate
times due to the caging of the particles. In the long-time
regime, the MSD for the orthogonal direction crosses over
to diffusive behavior (/ t) while that for the parallel direc-
tion shows a superlinear behavior at long times (/ 1:35). It
is remarkable that the twoMSDs almost coincide with each
other in the plateau region which indicates that the motion
in the cages exhibits only weak anisotropies. However, the
motion of the pulled particle becomes strongly anisotropic
when it jumps out of the cage. Whereas in the orthogonal
direction the diffusive motion is qualitatively similar to the
behavior in equilibrium (if one replaces temperature T by
an effective, force-dependent temperature Teff), in parallel
direction the diffusion constant does not exist.
Now, we relate the anomalous diffusion in force direc-

tion to the distribution of waiting times. At the low tem-
perature T ¼ 0:14, the pulled particle performs a hopping
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motion from cage to cage. This is indicated by the
trajectory xðtÞ in the inset of Fig. 4. After being localized
in a cage for a time �, the particle moves quickly to the next
cage which is a distance �x apart. Figure 4 shows the
waiting time distribution Pð�Þ for different values of f,
again at T ¼ 0:14. The decay of Pð�Þ can be well described
by a stretched exponential function Fð�Þ / expð�C��Þ
with � ¼ 0:5 (solid lines in the figure). Thus, Pð�Þ can
be described by a broad distribution associated with the
superlinear behavior of the MSD in force direction.

The scenario that we find here is reminiscent of a certain
class of trap models, introduced by Bouchaud et al.
[20,21]. The directed walk among traps with a broad
release time distribution is given by a master equation for

a one-dimensional lattice model with a random distribution
of asymmetric transition rates at each lattice site (caused in
our case by the force on a tagged particle in þx direction
and considering the surrounding particles as a random
energy landscape). This model yields superdiffusive be-
havior if the ratio between the mean bias and fluctuating
part of the random potential seen by the random walker is
between 1 and 2 (the latter ratio is quantified by a parame-
ter 	 [20]). In our case, the fluctuating part of the random
potential corresponds to the rattling motion of the tagged
particle in the cage and the mean bias to the directed
hopping from cage to cage. Note that for very high forces
(see above), the motion of the pulled particle becomes
diffusive again; in fact, this is predicted by the trap model
for 	> 2.
Summary and conclusions.—We have presented an ex-

tensive molecular dynamics simulation to reveal active
nonlinear microrheology in a binary Yukawa mixture.
Beyond linear response, we find a regime of intermediate
Peclet numbers Pe� where Pe� follows a force-temperature
superposition principle. In this regime, the motion of the
pulled particle exhibits strong anisotropies in the long-time
limit; in particular, superdiffusion in parallel force direc-
tion is found.We have shown that the diffusion dynamics is
completely different from that of glass-forming liquids
under shear, and so we challenge a possible relationship
between microrheology and macrorheology.
The superdiffusive regime is only seen in the strongly

supercooled regime, characterized by a broad waiting time
distribution and a hopping motion of the pulled particle
through a quasifrozen environment. Thus, the latter regime
has not been observed in recent microrheological studies,
focussing on the diffusion dynamics of ‘‘nonglassy’’ fluids
[17,25]. We have indicated that superdiffusion at inter-
mediate Pe� can be understood in terms of a simple trap
model. However, this model does not take into account the
concept of an effective temperature Teff for the transverse
diffusion. As indicated above, Teff has a quadratic depen-
dence on the external force f and can be understood in
terms of a mean-field theory [24]. Via this route, the
transverse diffusion can be incorporated into a three-
dimensional trap model. This is an issue for forthcoming
studies.
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