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We study the conductivity and shear viscosity tensors of a strongly coupled N ¼ 4 super-Yang-Mills

plasma which is kept anisotropic by a � parameter that depends linearly on one of the spatial dimensions.

Its holographic dual is given by an anisotropic axion-dilaton-gravity background and has recently been

proposed by Mateos and Trancanelli as a model for the preequilibrium stage of quark-gluon plasma in

heavy-ion collisions. By applying the membrane paradigm which we also check by numerical evaluation

of Kubo formula and lowest lying quasinormal modes, we find that the shear viscosity purely transverse to

the direction of anisotropy saturates the holographic viscosity bound, whereas longitudinal shear

viscosities are smaller, providing the first such example not involving higher-derivative theories of gravity

and, more importantly, with fully known gauge-gravity correspondence.
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Introduction.—Hydrodynamic simulations of heavy-ion
collisions suggest [1] that the produced quark-gluon
plasma is behaving like an almost perfect fluid with a ratio
of shear viscosity over entropy density not far from the
famous result @=4� associated with the membrane para-
digm of black holes [2] and which holographic gauge-
gravity duality maps to the corresponding quantity of
maximally supersymmetric Yang-Mills theory in the limit
of infinite color number and infinite ’t Hooft coupling
[3,4]. This value has been conjectured to form the lower
bound for any realistic matter [5]. It was found to be
saturated universally [6,7] in dual theories involving an
isotropic horizon described by Einstein gravity. Values
above this bound are obtained when corrections due to
finite coupling strength are included [8], but it has been
shown that values violating the bound can arise in higher-
derivate gravities [9], although so far no complete gauge-
gravity correspondence has been established for finite
violations.

The possibility of nonuniversal shear viscosity within
two-derivative gravity has been considered before in grav-
ity duals of noncommutative gauge theories [10] and
p-wave superfluids [11], where shear modes in addition
to the universal purely transverse one exist. For p-wave
superfluids, nonuniversal values above the bound have
been recently obtained in [12].

Anisotropies are of particular importance to the non-
equilibrium dynamics of the quark-gluon plasma in heavy-
ion collisions. At weak coupling, they give rise to
non-Abelian plasma instabilities [13] and turbulent behav-
ior [14] that has been argued to effectively reduce the shear
viscosity [15], which is parametrically large in a weakly
coupled plasma [16]. More directly accessible experimen-
tal signatures such as anisotropic photon and dilepton
emission [17], momentum broadening of jets [18] as well
as quarkonium dissociation [19] have been studied in
the hard-loop effective theory [20] for a weakly coupled

anisotropic plasma where on sufficiently small time scales
the anisotropy can be taken as stationary.
While holographic models of the evolution of strongly

coupled quark-gluon plasma towards isotropy are of im-
mediate interest and have been studied extensively [21],
further insight may be obtained by models where the
anisotropy is temporarily fixed. The first such attempt
was presented by Janik and Witaszczyk in [22], where
the gravity dual involves a naked singularity. In [23] we
have studied electromagnetic signatures of this model
which are qualitatively similar to weak-coupling results
at high frequencies, but which involve vanishing conduc-
tivities in the limit of zero frequency and absence of
hydrodynamic behavior.
Anisotropic axion-dilaton-gravity solution.—Recently,

Mateos and Trancanelli [24,25] have adapted the spatially
anisotropic duals of Lifshitz-like fixed points of [26] to a
setup with AdS boundary conditions and finite tempera-
ture. This provides an anisotropic version of an N ¼ 4
super-Yang-Mills plasma where the anisotropy is kept sta-
tionary by deforming the gauge theory by

�S ¼ 1

8�2

Z
�ðzÞTrF ^ F (1)

with �ðzÞ ¼ 2�az depending linearly on one of the spatial
dimensions. The constant a is related to the density of
D7-branes (homogeneously distributed along z) that are
dissolved in the bulk of the dual theory (they do not extend
to the holographic boundary). The dual bulk theory is
effectively five-dimensional axion-dilaton gravity with
negative cosmological constant and bulk action

Sbulk ¼ 1

2�2

Z
M

ffiffiffiffiffiffiffi�g
p �

Rþ 12� ð@�Þ2
2

� e2�
ð@�Þ2
2

�
; (2)

where �2 ¼ 8�G ¼ 4�2=N2
c and axion � ¼ az. Here

we have dropped a factor S5 of the ten-dimensional
solution M� S5 and set its radius L ¼ 1. The remaining
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five-dimensional geometry which asymptotes to AdS5 for
u ! 0 can be given by a line element of the form

ds2 ¼ e��ðuÞ=2

u2

�
�F ðuÞBðuÞdt2 þ du2

F ðuÞ þ dx2 þ dy2

þH ðuÞdz2
�
: (3)

The functionsB, F , andH can be written in terms of the
dilaton�, which itself has to satisfy a third-order nonlinear
differential equation in u [25]. For nonvanishing anisot-
ropy parameter a there is an anisotropic horizonF ðuhÞ¼0
with H > 1, which is completely regular. This will allow
us to apply the membrane paradigm along the lines of [7]
for studying conductivities and shear viscosities, both of
which have two independent components at nonzero
anisotropy.

The thermodynamics of this setup and its instabilities
are discussed in [25]. Upon holographic renormalization
which brings in a reference scale �, the stress tensor of the
gauge theory has the form

hT��i ¼ diagð	; P?; P?; PzÞ; (4)

with a conformal anomaly hT�
� i / a4. The entropy density

is given by

s ¼ ð	þ P?Þ=T (5)

with T ¼ jF 0ðuhÞj
ffiffiffiffiffiffiffi
Bh

p
=4�. Unlike the strictly positive s

which continues to be given by a quarter of the horizon area
over spatial volume, 	 and the pressure components de-
pend separately on T=� and a=� and can become negative
in various regions of the phase diagram. When jaj is
increased from the isotropic limit a ¼ 0, the pressure
anisotropy first becomes oblate (Pz < P?), while prolate
anisotropies can be obtained for larger jaj. For small a
there is a qualitative similarity to the plasma instabilities in
an anisotropic weakly coupled plasma in that the homoge-
neous phase is unstable against filamentation of the distri-
bution of the dissolved D7 branes along z [25]. For
sufficiently large a the instabilities against filamentation
however disappear, and also various components of the
stress tensor (but not the entropy) can become negative.

Conductivities.—Including a standard Maxwell action
for a U(1) gauge field in the bulk with coupling constant
geff leads to a conjugate momentum with respect to evo-
lution in the coordinate u that defines the current

j� ¼ @L
@ð@uA�Þ ¼ �

ffiffiffiffiffiffiffi�g
p
g2eff

guug��Fu�: (6)

As in [7], regularity at the horizon in terms of the
Eddington-Finkelstein coordinate v for infalling observers
defined by

dv ¼ dt�
ffiffiffiffiffiffiffiffiffiffi
guu
�gtt

s
du (7)

relates ji linearly to the electric field Fti, so that the horizon
acts as a conductor. The anisotropic metric (3), however,
leads to two different conductivities


? ¼ g�2
eff

ffiffiffiffi
�

p
gxxjuh (8)


z ¼ g�2
eff

ffiffiffiffi
�

p
gzzjuh ¼ 
?=H ðuhÞ � 
?; (9)

where � ¼ g=gttguu. In the limit of vanishing frequency!
and wave vector ~q we have @uj

� ! 0, which allows us to
conclude that 
z;? give the dc conductivities of the bound-

ary theory. The numerical results as a function of the
anisotropy parameter a=T are given in Fig. 1.
Because 
z;? are determined by geometric data, they do

not depend on� and thus only on the ratio a=T. Whether a
given value a=T corresponds to oblate or prolate anisot-
ropy however depends on T=� [25]. Our finding that

z=
? is always smaller than 1 may seem surprising,
but we have in fact found an extreme version of this
phenomenon in the singular geometry of [22]. While in
this case both dc conductivities vanish, the ratio of ac
conductivities 
zð!Þ=
?ð!Þ ! 0 as ! ! 0 for both ob-
late and prolate anisotropies (see Fig. 11 of [23]).
Following the procedure of [27], one can also obtain two

related diffusion constants Dz;? ¼ 
z;?��1 with common

charge susceptibility

� ¼
�Z uh

0
du

�g2effgttguuffiffiffiffiffiffiffi�g
p

��1
: (10)

We have checked [28] the results for Dz;? by numerical

calculation of the lowest quasinormal mode in the diffusive
channel, thus verifying that the membrane paradigm is
indeed valid for conductivities of an anisotropic horizon.
Shear viscosities.—In an anisotropic fluid with axial

symmetry, the viscosity tensor [29] �ijkl has five indepen-

dent components, two of which are shear viscosities which
we denote as

�? ¼ �xyxy; �k ¼ �xzxz ¼ �yzyz; (11)
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FIG. 1 (color online). The dc conductivities along and trans-
verse to the direction of anisotropy as a function of the anisot-
ropy parameter a=T.
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and which can be extracted by Kubo formulas from the
corresponding retarded correlation functions of the stress
tensor. In the gravity dual we need to consider metric
fluctuations h��, for which we adopt the gauge hMu ¼ 0.

Expanding the action (2) to second order in h�� we obtain

Sð2Þ ¼ 1

16�G

Z
d5x

� ffiffiffiffiffiffiffi�g
p ð2Þ2Að0Þ

þ ffiffiffiffiffiffiffi�g
p ð0Þ

�
Rð2Þ � 1

2
e2�a2gzzð2Þ

��
; (12)

where we introduced

Að0Þ ¼ � 1

2
ð8þ 1

2
�02guu þ 1

2
e2�a2gzzÞð0Þ ¼ Rð0Þ

xx

gð0Þxx

: (13)

Considering first Fourier modes c?ðu; qÞ � hxyðu; qÞ
and their conjugate momenta�?ðu; qÞ we find that requir-
ing regularity at the horizon as above for vector perturba-
tions gives the purely transverse shear viscosity

�? ¼ �?ðuh; qÞ
i!c?ðuh; qÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�ðuhÞ

p
16�G

¼ s

4�
(14)

which reproduces the universal value for Einstein gravity
with isotropic horizons. Because the radial evolution be-
comes trivial as q� ! 0,

@u�?ðu; qÞ ¼
ffiffiffiffiffiffiffi�g

p
16�G

ðgtt!2 þ gzzq2zÞc?ðu; qÞ ! 0;

(15)

the (momentum independent) result of the membrane para-
digm gives the purely transverse shear viscosity of the
boundary theory at q� ¼ 0, exactly as in the universality
proof of [7].

Turning to nontransverse metric fluctuations we find that
the radial flow is still trivial in the limit q� ! 0 for the case
of c L ¼ gxxhzx because

@u�Lðu; qÞ ¼
ffiffiffiffiffiffiffi�g

p
16�G

gxx
gzz

ðgtt!2 þ gyyq2yÞc Lðu; qÞ ! 0

(16)

for any a (while gzzhxz would have a nontrivial flow / a2).
We can therefore use the membrane paradigm to calculate
the longitudinal shear viscosity from

�k ¼ �Lðuh; qÞ
i!c Lðuh; qÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�ðuhÞ

p
16�G

gxxðuhÞ
gzzðuhÞ ¼

s

4�H ðuhÞ
<

s

4�

(17)

for a � 0, which is plotted in Fig. 2 as a function of a=T.
Note that the ratio �k=�? turns out to be identical to


z=
?.
We have also checked (17) by a direct numerical evalu-

ation of the Kubo formula

�k ¼ lim
!!0

lim
u!0

Im
�Lðu;!; 0Þ
!c Lðu;!; 0Þ : (18)

Momentum diffusion.—As a further corroboration,
we have also studied the diffusive behavior of the relevant
shear modes. The longitudinal shear viscosity is related to
the diffusive pole of the shear mode Z3 �
gxxðqhtxðt; z; uÞ þ!hzxðt; z; uÞÞ at small but nonvanishing
momenta, where ~q is oriented in the z direction in order to
preserve O(2) symmetry which avoids a coupling to axion
modes (the general case will be discussed elsewhere [28]).
We can use the trick of [27] of Kaluza-Klein dimensional
reduction in the x direction, which maps the problem to
that of U(1) gauge fields with a u-dependent effective
coupling. This yields the diffusion constant

Dzx ¼ �k
	þ P?

¼ e�ð3�ðuhÞ=4Þ

u3h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H ðuhÞ

q Z uh

0
duu3e3�ðuÞ=4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
BðuÞ
H ðuÞ

s
:

(19)

We have also checked this result by calculating numeri-
cally the lowest lying quasinormal mode of the retarded
propagator of the shear mode Z3ðuÞ which satisfies the
ordinary differential equation

Z00
3 þ

1

2

�ðgttg0zz�gzzg
0
ttÞðq2gtt�!2gzzÞ

gttgzzðq2gttþ!2gzzÞ
�g0uu
guu

þ4g0xx
gxx

�
Z0
3

�guu

�
!2

gtt
þ q2

gzz

�
Z3¼0: (20)

We can now compare (19) with the analogous calcula-
tion of the shear mode Z1�gyyðqhtyðt;x;uÞþ!htyðt;x;uÞÞ
with momentum oriented in the x direction, yielding (the
breaking of SO(2) invariance in this case does not lead to
complications from axion modes)
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FIG. 2 (color online). Transverse and longitudinal shear vis-
cosities over s=4� as a function of the anisotropy parameter
a=T.
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Dxy ¼
e�ð3�ðuhÞ=4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H ðuhÞ

q
u3h

Z uh

0
duu3e3�ðuÞ=4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
BðuÞ
H ðuÞ

s

¼ �?
	þ P?

¼ 1

4�T
; (21)

where the last equality follows from (14) together with (5),
but is also reproduced numerically. Taking the ratio of
Eqs. (19) and (21) leads again to the result

�k
s

¼ 1

4�H ðuhÞ
<

1

4�
for a � 0: (22)

Conclusion.—As mentioned above, a result for �k that

deviates from the universal result of Einstein gravity with
isotropic horizons has been recently obtained in a dual
model for p-wave superfluids [12], however one that is
above s=4�. To our knowledge, the result (22) is the first
example of a shear viscosity that falls below this value
without recourse to higher-derivative gravity and moreover
with fully known gauge-gravity correspondence.

Parts of the phase diagram in a=� and T=� of this
theory exhibit instabilities against filamentation into inho-
mogeneous mixed configurations with aiso ¼ 0 and some
aani > a, while for sufficiently large a the anisotropic
homogeneous phase is thermodynamically stable [25].
Strictly speaking, the above calculation of hydrodynamical
transport coefficients is limited to stable homogeneous
phases, but we have numerically verified their existence
on lines of constant a=T * 1:3.

It is not clear what implications, if any, our result of
�k=�? < 1 for a strongly coupled stationary anisotropic

plasma would have for real nonequilibrium evolution.
Intrinsically anisotropic hydrodynamic descriptions of
quark-gluon plasma have recently been proposed in [30],
however without allowing for different shear viscosity
components. It would be interesting to study the effects
of different shear viscosities in a hydrodynamical evolu-
tion, and also what ratios �k=�? a weakly coupled aniso-

tropic non-Abelian plasma would give rise to.
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