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We derive the primordial power spectrum of density fluctuations in the framework of quantum

cosmology. For this purpose we perform a Born-Oppenheimer approximation to the Wheeler-DeWitt

equation for an inflationary universe with a scalar field. In this way, we first recover the scale-invariant

power spectrum that is found as an approximation in the simplest inflationary models. We then obtain

quantum gravitational corrections to this spectrum and discuss whether they lead to measurable signatures

in the cosmic microwave background anisotropy spectrum. The nonobservation so far of such corrections

translates into an upper bound on the energy scale of inflation.
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Without observational guidance it is illusory to find the
correct quantum theory of gravity. While there exist vari-
ous approaches to such a theory (see, e.g., the overview in
[1]), definite predictions are rare. Among these are the
calculation of small quantum gravitational corrections to
the Newtonian and Coulomb potential [2] and corrections
to Lamb shift and other effects due to the possible exis-
tence of a minimal length [3]. While the first effects are too
tiny to be observable in the foreseeable future, the latter
depend on a new dimensionless parameter for which
bounds can be found. The calculation of effects is also
important for the comparison of different approaches and
for the decision whether gravity must be quantized at all.

Our purpose here is to calculate potential observational
contributions to the cosmic microwave background (CMB)
anisotropy spectrum from quantum gravity. After all, the
main applications of such a theory should arise from
cosmology and black-hole physics. Our framework will
be quantum geometrodynamics governed by the Wheeler-
DeWitt equation [1,4]. Although it is likely that this is not
the most fundamental approach, one can put forward
strong arguments that it is approximately valid at energy
scales somewhat smaller than the Planck mass [5]. For
example, if one looks for a quantum wave equation that
immediately leads to Einstein’s equations in the semiclas-
sical limit, one is directly driven to the Wheeler-DeWitt
equation.

This connection between the Wheeler-DeWitt equation
and quantum field theory in an external spacetime can be
established by a Born-Oppenheimer type of approximation
[1]. Expanding with respect to the Planck mass, one arrives
first at the functional Schrödinger equation for nongravita-
tional fields in an external spacetime satisfying the Einstein
equations. Proceeding with this scheme to the next orders,
one can derive quantum gravitational correction terms pro-
portional to the inverse Planck mass squared. The dominat-
ing correction terms are calculated in [6] at the formal level
of the full equations. The complete set of correction terms at

this order together with their interpretation in terms of
Feynman diagrams can be found in [7]. The generalization
of [6] to supergravity is presented in [8].
In the present Letter, we calculate the dominating cor-

rection term of [6] for the case of the CMB anisotropy
spectrum. In this way, we hope that either a quantum
gravitational effect can be observed or that bounds on
cosmological parameters can be found from their
nonobservation.
We shall consider the Wheeler-DeWitt equation for the

case of small fluctuations (leading to the anisotropies in the
CMB spectrum) in a flat Friedmann-Lemaı̂tre universe
with scale factor a � expð�Þ and a scalar-field� that plays
the role of the inflaton. For definiteness we shall choose the
simplest potential in chaotic inflation [9], V ð�Þ ¼
1
2m

2�2, but any other potential should fit our purpose as

long as at the classical level a slow-roll condition of the

form _�2 � jV ð�Þj holds. Setting @ ¼ c ¼ 1, the
Wheeler—DeWitt equation for this ‘‘minisuperspace
part’’ reads (see, e.g., [1])

H 0�0ð�;�Þ

� e�3�

2

�
1

m2
P

@2

@�2
� @2

@�2
þ e6�m2�2

�
�0ð�;�Þ ¼ 0;

(1)

where mP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�=2G

p � 2:65� 1019 GeV is a rescaled

Planck mass, and the field redefinition � ! �=
ffiffiffi
2

p
� was

performed.
In addition to the Born-Oppenheimer approximation for

the Wheeler-DeWitt equation, we make one further as-
sumption: we assume that the kinetic term of the � field
is small compared to the potential term, that is,
@2�0=@�

2 � e6�m2�2�0. It corresponds to the slow-
roll approximation for inflationary models and is also the
standard assumption in discussions of the no-boundary and
tunneling proposals in quantum cosmology [1]; it allows us
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to neglect the �-kinetic term in (1). For this reason we can
also substitute m� in (1) by mPH, where H is the quasi-
static Hubble parameter of inflation, which in the classical
limit obeys j _Hj � H2. This replacement of the quantum
variable � by a c number is not problematic here, because
(1) describes in the Born-Oppenheimer approximation the
classical background on which the quantum fluctuations of
the inflaton propagate, see below.

We now consider the fluctuations of an inhomogeneous
inflaton field on top of its homogeneous part,

� ! �ðtÞ þ ��ðx; tÞ;
and perform a decomposition into Fourier modes with
wave vector k, k � jkj,

��ðx; tÞ ¼ X
k

fkðtÞeik�x:

(We assume for simplicity that space is compact and the
spectrum for k thus discrete.) The Wheeler-DeWitt equa-
tion including the fluctuation modes then reads [10]�

H 0 þ
X1
k¼1

H k

�
�ð�;�; ffkg1k¼1Þ ¼ 0;

where the Hamiltonians H k of the fluctuation modes are
given by

H k ¼ 1

2
e�3�

�
� @2

@f2k
þ ðk2e4� þm2e6�Þf2k

�
:

Since the fluctuations are small, their self-interaction can
be neglected, and one can make the following product
ansatz for the full wave function:

�ð�;�; ffkg1k¼1Þ ¼ �0ð�;�ÞY1
k¼1

~�kð�;�; fkÞ:

Under some mild assumptions, one finds that the compo-

nents �kð�;�; fkÞ :¼ �0ð�;�Þ ~�kð�;�; fkÞ obey [10,11]

1

2
e�3�
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P
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@�2
þ e6�m2

PH
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� @2

@f2k
þWkð�Þf2k

�
�kð�;�; fkÞ ¼ 0; (2)

where we have defined the quantity

Wkð�Þ :¼ k2e4� þm2e6�;

and we have used m� � mPH as mentioned above. (For
this reason we shall omit the argument� in the following.)
Eq. (2) is the starting point for the Born-Oppenheimer
approximation.

Following the general procedure of [6], we make the
ansatz

�kð�; fkÞ ¼ eiSð�;fkÞ;

and expand Sð�; fkÞ in terms of powers of m2
P,

Sð�; fkÞ ¼ m2
PS0 þm0

PS1 þm�2
P S2 þ . . . :

Inserting this ansatz into (2) and comparing consecutive
orders of m2

P, one obtains at Oðm4
PÞ that S0 is independent

of fk, and that it obeys at Oðm2
PÞ the Hamilton-Jacobi

equation�
@S0
@�

�
2 � Vð�Þ ¼ 0; Vð�Þ :¼ e6�H2;

which defines the classical minisuperspace background. Its
solution is S0ð�Þ ¼ �e3�H=3.
At Oðm0

PÞ we first write
c ð0Þ

k ð�; fkÞ � �ð�ÞeiS1ð�;fkÞ;
and impose a condition on �ð�Þ that makes it equal to the
standard WKB prefactor. After introducing the ‘‘WKB
time’’ according to

@

@t
:¼ �e�3� @S0

@�

@

@�
; (3)

one finds that each c ð0Þ
k obeys a Schrödinger equation,

i
@

@t
c ð0Þ

k ¼ H kc
ð0Þ
k : (4)

At the next order Oðm�2
P Þ, we decompose S2ð�; fkÞ as

follows:

S2ð�; fkÞ � &ð�Þ þ �ð�; fkÞ;
and demand that &ð�Þ be the standard second-order WKB
correction. The wave functions

c ð1Þ
k ð�; fkÞ :¼ c ð0Þ

k ð�; fkÞeim�2
P �ð�;fkÞ;

then obey the quantum gravitationally corrected
Schrödinger equation [6]

i
@

@t
c ð1Þ

k ¼ H kc
ð1Þ
k � e3�

2m2
Pc

ð0Þ
k

�ðH kÞ2
V

c ð0Þ
k

þ i
@

@t

�
H k

V

�
c ð0Þ

k

�
c ð1Þ

k : (5)

In the following, we shall only take into account the first
correction term because it usually gives the dominating
contribution [6,7]. The second correction term corresponds
to a small violation of unitarity, where unitarity is here
understood with respect to the standard L2 inner product
for the modes fk. While the Hilbert-space structure for full
quantum gravity is unknown [1], this is the obvious choice
for the fk because their states c k obey the approximate
Schrödinger equation (4). The unitarity-violating term can
be absorbed in a t-dependent redefinition of the states [12].
We shall now look for a solution of the uncorrected

Schrödinger equation (4). We make a Gaussian ansatz,

c ð0Þ
k ðt; fkÞ ¼ N ð0Þ

k ðtÞe�ð1=2Þ�ð0Þ
k
ðtÞf2

k : (6)

Here, we have expressed � in terms of the WKB time t
introduced in (3), � ¼ Ht. We thereby arrive at the follow-
ing system of differential equations:
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_N ð0Þ
k ðtÞ ¼ � i

2
e�3�N ð0Þ

k ðtÞ�ð0Þ
k ðtÞ; (7)

_�
ð0Þ
k ðtÞ ¼ ie�3�½�f�ð0Þ

k ðtÞg2 þWkðtÞ�: (8)

In the model of chaotic inflation employed here we have
the condition ðm=HÞ2 � 1 [9]. In this limit the solution of
(8) expressed in terms of the dimensionless quantity
�ðtÞ :¼ k=ðHaðtÞÞ reads

�ð0Þ
k ð�Þ ¼ k3

H2�

1

�� i
þO

�
m2

H2

�
: (9)

From (7) and the normalization of the states one then

obtains the solution jN ð0Þ
k ðtÞj2 ¼ ½<e�ð0Þ

k ðtÞ=��1=2.
In the slow-roll regime, the density contrast is given by

(see, e.g., [13], p. 364)

�kðtÞ � ��kðtÞ
V 0

¼
_�ðtÞ _	kðtÞ
V 0

;

where V 0 denotes the scalar-field potential evaluated at
the background solution �ðtÞ, and 	kðtÞ is the classical
quantity related to the quantum mechanical variable fkðtÞ
by taking its expectation value with respect to a Gaussian
state; for a general Gaussian we define

	2
kðtÞ :¼ hc kjf2kjc ki

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
<e�k

�

s Z 1

�1
f2ke

�ð1=2Þ½�	
k
ðtÞþ�kðtÞ�f2kdfk

¼ 1

2<e�kðtÞ :

The density contrast must be evaluated at the time tenter
when the corresponding mode reenters the Hubble radius
during the radiation-dominated phase. A standard relation
gives ([13], p. 367)

�kðtenterÞ ¼ 4

3

V 0

_�2
�kðtexitÞ ¼ 4

3

_	kðtÞ
_�ðtÞ

��������t¼texit

:

Evaluating _	ð0Þ
k ðtÞ at t ¼ texit using (9) and noting that

�ðtexitÞ ¼ 2� at Hubble-scale crossing, we get

j _	ð0Þ
k ðtÞjt¼texit ¼

2
ffiffiffi
2

p
�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�2 þ 1
p H2

k3=2
:

This then leads to the power spectrum

�2
ð0ÞðkÞ :¼ 4�k3j�kðtenterÞj2 / H4

j _�ðtÞj2texit
; (10)

which is approximately scale invariant. This is the standard
result for a generic inflationary model.
We now want to calculate the quantum gravitational

correction terms following from (5). (A possible effect
on the relic graviton density is discussed along these lines
in [14].) As mentioned above, we shall neglect the
unitarity-violating term in (5). We assume that the correc-
tion can be accommodated by the Gaussian ansatz

c ð1Þ
k ðt; fkÞ ¼

�
N ð0Þ

k ðtÞ þ 1

m2
P

N ð1Þ
k ðtÞ

�

� exp

�
� 1

2

�
�ð0Þ

k ðtÞ þ 1

m2
P

�ð1Þ
k ðtÞ

�
f2k

�
:

One then gets from (5) an equation for the correction

term �ð1Þ
k ,

_�ð1Þ
k ðtÞ � �2ie�3��ð0Þ

k ðtÞ
�

�
�ð1Þ

k ðtÞ � 3

4VðtÞ
�
½�ð0Þ

k ðtÞ�2 �WkðtÞ
��

: (11)

We shall assume that the correction term vanishes for late

times,�ð1Þ
k ðtÞ ! 0 as t ! 1. This is, of course, an assump-

tion that must eventually be justified from the theory itself;
the chosen boundary condition guarantees that the model is
consistent and in accordance with observations at late
times.
Using (9), we rewrite (11) in terms of �, which in the

limit ðm=HÞ2 � 1 gives

d

d�
�ð1Þ

k ð�Þ ¼ 2i�

�� i
�ð1Þ

k ð�Þ þ 3�3

2

2�� i

ð�� iÞ3 : (12)

The corrected quantity _	ð1Þ
k needed for the evaluation of the

power spectrum (10) is then given by

j _	ð1Þ
k ðtÞj ¼

��������H�ffiffiffi
2

p d

d�

��
<e�ð0Þ

k ð�Þ þ 1

m2
P

<e�ð1Þ
k ð�Þ

��1=2
���������

¼
�������� �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð�2 þ 1Þp H2

k3=2

�
1þ �2 þ 1

k3
<e�ð1Þ

k ð�ÞH
2

m2
P

��3=2
�
1� ð�2 þ 1Þ2

2�k3
<e

�
d

d�
�ð1Þ

k ð�Þ
�
H2

m2
P

���������:
The solution of (12) can be reduced to numerical integra-
tion and yields <e�ð1Þ

k ð� ¼ 2�Þ ’ �1:076 as well as
<e½d�ð1Þ

k ð�Þ=d���¼2� ’ 1:451, which eventually leads to

j _	ð1Þ
k jtexit ’ jCkjj _	ð0Þ

k jtexit ; (13)

where

Ck :¼
�
1� 43:56

k3
H2

m2
P

��ð3=2Þ�
1� 189:18

k3
H2

m2
P

�
: (14)

With this result we can write the corrected power spectrum
as the product of the uncorrected power spectrum with a
correction term Ck, �

2
ð1ÞðkÞ ¼ �2

ð0ÞðkÞC2
k. An expansion of

C2
k in terms of ðH=mPÞ2 yields
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�2
ð1ÞðkÞ ’ �2

ð0ÞðkÞ
�
1� 123:83

k3
H2

m2
P

þ 1

k6
O
�
H4

m4
P

��
2
: (15)

We emphasize the important fact that the corrected power
spectrum is now explicitly scale dependent. The quantita-
tive contribution of the quantum gravitational terms is only
significant if the inflationary Hubble parameter H is suffi-
ciently large. It is not surprising that the effects become
sizeable only if H approaches the Planck scale.

An inspection of (14) shows that Ck approaches one for
large k (as it must), but decreases monotonically to zero for
large scales (small k); one thus finds a suppression of

power for large scales. The zero point is reached for k �
5:74ðH=mPÞ2=3. However, the approximation (14) breaks
down if this zero point is approached and one has to take
into account in this limit higher orders of ðH=mPÞ2.

The effect is most prominent for large scales because
these scales are the earliest to leave the Hubble scale
during inflation. However, the measurement accuracy for
large scales is fundamentally limited by cosmic variance,
which follows from the fact that we only observe one
Universe (see, e.g., [15]). For this reason, missions such
as the PLANCK satellite will not be able to see this effect if
it has not already been seen now. But there is still a merit of
our analysis: from the current nonobservation of the quan-
tum gravity terms one can get an upper bound on the
inflationary Hubble scale. Assuming for a rough estimate
that C2

k is not less than around 0.95 for the largest observ-

able scales k
 1 (which is motivated by the fact that the
deviation of the observed power spectrum from a scale-
invariant spectrum is smaller than about 5% [16]), one
obtains from (15) the bound

H & 1:4� 10�2mP 
 4� 1017 GeV: (16)

We must emphasize, however, that there already exists a
stronger constraint on this scale. This is because the energy
scale of inflation is limited by the observational bound on
the tensor-to-scalar ratio r (see, e.g., [17]). Using r < 0:22
[16] one finds H & 10�5mP 
 1014 GeV. As emphasized,
for example, in [18], the assumption H � mP is required
anyway and is self-consistent for inflationary models to
have a connection with reality. For the limiting value
H 
 1014 GeV one gets from (15)

�2
ð1ÞðkÞ ’ �2

ð0ÞðkÞ
�
1� 1:76� 10�9 1

k3
þOð10�15Þ

k6

�
2
;

for this value the correction is, thus, too small to be seen in
present observations.

In spite of this, we emphasize that our constraint (16)
arises as a definite prediction from a conservative approach
to quantum gravity, and it is reassuring that it is consistent
with other limits. It indicates, in particular, that no
additional trans-Planckian effects (see, e.g., [15,18]) have

to be taken into account in order to understand the pre-
dictions of this model.
Quantum gravitational corrections to the CMB anisot-

ropy spectrum have also been derived in loop quantum
cosmology. While in [19], a suppression of power at large
scales was found, the authors of [20] predicted an enhance-
ment at those scales. This demonstrates that one can use the
CMB anisotropies to compare different approaches to
quantum gravity. We hope that such investigations will
eventually lead to an observational test of quantum gravity.
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