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Cyclotron Motion in the Vicinity of a Lifshitz Transition in Graphite
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Graphite, a model (semi)metal with trigonally warped bands, is investigated with a magnetoabsorption
experiment and viewed as an electronic system in the vicinity of the Lifshitz transition. A characteristic
pattern of up to 20 cyclotron resonance harmonics has been observed. This large number of resonances,
their relative strengths and characteristic shapes trace the universal properties of the electronic states near
a separatrix in momentum space. Quantum-mechanical perturbative methods with respect to the trigonal
warping term hardly describe the data which are, on the other hand, fairly well reproduced within a
quasiclassical approach and conventional band structure model. Trigonal symmetry is preserved in
graphite in contrast to a similar system, bilayer graphene.
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A Lifshitz transition [1] (also known as electronic topo-
logical transition) is a change in the Fermi surface topology
occurring upon a continuous change of some external
parameter, such as pressure [2], magnetic field [3] or,
most naturally, doping [4]. This transition does not involve
symmetry breaking, like conventional phase transitions of
the Landau type, but still leads to observable singularities
in thermodynamics, electron transport, sound propagation,
and magnetic response of metals [5]. Saddle points in
electronic dispersion, often apparent in complex metals,
have only recently been visualized with the spectroscopy
method of angle-resolved photoemission [6]. In this Letter,
we show how the proximity to a Lifshitz transition mani-
fests itself in cyclotron resonance (CR) absorption experi-
ments on graphite, a model system with saddle points due
to the trigonal warping of electronic bands [7].

Classically, CR can be understood from the equation of
motion for an electron in a magnetic field B [8]:

dp/dt = (e/c)lv X B], (D

where p = ik is the electron quasimomentum, ¢ = —|e|
the electron charge, and v = de(p)/dp is the electron
velocity, determined by the dispersion e(p). Since both
the energy € and the momentum component p, along B
are conserved, the motion occurs along cyclotron orbits in
the (p., p,) plane, determined by the condition
€(py, py, p;) = const. This motion is periodic, and its pe-
riod, 27/ w,, being proportional to the cyclotron mass,
defines the cyclotron frequency w, = w.(€, p,). When
an electric field, oscillating at frequency w, is applied,
the electron can absorb energy. Absorption becomes reso-
nant when the perturbation frequency @ matches the cy-
clotron frequency w,. or its integer multiple.
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In good metals, the incoming radiation is efficiently
screened and penetrates the sample only within a thin
skin layer. CR absorption is then a surface effect, observed
mainly when the magnetic field is parallel to the surface
[9,10]. This makes CR for good metals a less efficient tool
for probing the Fermi surface, as compared to other meth-
ods, such as, e.g., the de Haas—van Alphen effect. The
resonant absorption is also often smeared by the depen-
dence of w, on p,, which is an additional disadvantage.

We have applied the CR absorption technique to study
the cyclotron motion in the vicinity of the Lifshitz
transition in graphite. The low-temperature in-plane con-
ductivity of this material is relatively low, o ~
107-108 (Q - m)~!, and it quickly decreases upon the ap-
plication of a magnetic field [7,11]. The skin depth thus
reaches tens of nanometers and greatly exceeds the spacing
between adjacent graphene layers. Moreover, graphite is a
highly anisotropic crystal with rather flat electronic disper-
sion in the z direction (perpendicular to the layers). It
appears as a suitable material for CR studies of the elec-
tronic system near the Lifshitz transition driven by the
trigonal warping of electronic bands.

CR absorption was measured using the setup routinely
applied to high-frequency electron paramagnetic reso-
nance experiments [12]. A flake of natural graphite
(50 wm thick, area 1 mm?) was placed in a Fabry-Perot
cavity mounted inside a superconducting coil. The mag-
netic field was applied perpendicular to the graphene
layers. Linearly polarized microwave radiation from a
Gunn diode tripled to a frequency of 283.2 GHz
(1.171 meV) was delivered to the sample via quasioptics
waveguides. The field-modulation technique was applied
to enhance the detection sensitivity. The modulation
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amplitude was chosen in a way to maximize the signal but
to not distort the measured line shapes.

A representative experimental spectrum (raw data) is
shown in Fig. 1(a). This trace represents the response of
the natural graphite specimen measured as a function of the
magnetic field at fixed microwave frequency. Because of
the field-modulation technique, it corresponds to the de-
rivative of the absorbed power with respect to B. The
magnetoabsorption response of graphite is expected to be
mostly sensitive to singularities in the electronic joint
density of states, located at the K and H points of the
graphite Brillouin zone. A number of the observed reso-
nances can be easily identified as being due to electronic
states at the K point, along the results of previous similar
studies [13—18]. Holes at the H point as well as decoupled
sheets of graphene on the surface of graphite give rise to
resonances at a different spectral range (much lower mag-
netic fields) [19,20].

To a very first approximation, the K point electrons of
graphite have parabolic dispersion. Their effective mass,
most frequently reported to be in the range from m =
0.057mq to 0.060m [7] (mg free electron mass), fixes the
cyclotron frequency at hwqo = 2 X B[T] meV. Then, the
broad but still visible resonance at |B| = 0.6 T is attributed
to the fundamental CR absorption. All other observed
resonances are higher harmonics of the fundamental one.
This is evidenced in Fig. 1(b) where the spectrum from
Fig. 1(a) is replotted against w/w., (i.e., versus B!
instead of B). hw, is eventually set at 2.05 X B[T] meV.

CR harmonics
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FIG. 1 (color online).

In agreement with previous reports [13], the observed
harmonics follow two series: = |3k *= 1wy, where
k=0,%£1,%£2....

The superior quality of the present data (due to higher
frequencies applied and perhaps a better quality of graphite
specimens) allows us to uncover more and intriguing spec-
tral features. Our key observations, that we interpret in the
following, are (i) the appearance of a large number (up to
20) of CR harmonics, (ii) an enhanced strength of 3k + 1
harmonics as compared to the strength of the 3k — 1 series
at B > 0 (and vice versa at B < 0), and finally, (iii) a very
characteristic, asymmetric broadening of the observed
resonances, enhanced on the low-frequency (high-field)
sides of the absorption peaks. These features are clearly
seen in the raw data and also in Fig. 1(c) in which we
reproduce the actual absorption spectrum, as derived from
the numerical integration, over the magnetic field, of the
measured (differential) signal.

The appearance of n harmonics with n =3k = 1 is
usually understood as being due to breaking of the isotropy
of the electronic spectrum in the layer plane by the trigonal
warping. For isotropic bands, only the £ = 0 fundamental
transition is allowed, whereas the n = 3k = 1 harmonic
appears in the |k|th order of the perturbation theory with
respect to the trigonal warping term [16,21]. The spectrum
in Fig. 1 contains many harmonics which start to fall off
only at large indices n = 7. Clearly, the perturbation theory
is not applicable to interpret these data. Instead, we will use
the quasiclassical approximation.

"o |3k-1]
c0'
(x)clo|3k+1| ]

-d(Absorbed power)/dB (arb.u.)

Absorbed power (arb.u.)

20 30

Magnetoabsorption spectra of natural graphite measured at a fixed microwave excitation energy hw =

1.171 meV and detected with the help of the field-modulation technique at temperature of 5 K. Harmonics of fundamental CR
frequency w.q = eB/m. (mq = 0.057m,) are observed down to fields of 20 mT. (a) Derivative of the absorption with respect to the
magnetic field B, as a function of B. (b) The same plotted as a function of w/w.y, so that individual harmonics at frequencies of

13k = 1w, k =

0, =1, =2..., are clearly seen, as marked by vertical arrows. (¢) Absorption as a function of w/w,, obtained by the

numerical integration of the curve presented in part (a) with respect to B.
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Equation (1) can be cast in the Hamiltonian form in the
phase space (p., p,): dp./di=—3H (p. p,)/dp,,
dp,/dt = 0H (p,, p,)/dp,, with the Hamiltonian
H(p.. py) = —(eB/c)e(p,, p,) (we omitted p,, which
enters as a parameter). Generally, classical Hamiltonian
systems exhibit a very rich behavior. However, they share
some universal features when the energy e is close to that
of a saddle point of the Hamiltonian, € = €g,, as is well
known in the classical nonlinear physics [22]. (i) The
cyclotron motion in the vicinity of a saddle point is slow
and its period diverges logarithmically, w_.(€) — 0 for e —
€p- (i1) The Fourier spectrum of this motion contains many
harmonics and their number diverges when € — €,. This
second fact provides an obvious hint for the interpretation
of the experimental data.

The experimentally probed electronic states are those
around the Fermi level €. Thus, the effects discussed
above are important if €z = €,. This is the case of graph-
ite, as illustrated in Fig. 2 using standard calculations based
on the Slonczewski-Weiss-McClure (SWM) model [23]
in the two-band approximation (see Supplemental
Information [24]). Here we used the standard values
of the SWM parameters [7]: y,=3150meV, vy, =
375meV, y, =—20meV, y3 = 315 meV, y,=44meV,

Fermi

1/ level

Separatrix

«

T T T T T T 0.25
_o2f E 3 =
g o020 3
£ o1 ] E 3
< ' Jo1s =
§ ook ; 5 1t
c e Jo10 ¢
g o1f 3 ' 8 -
S ' E ] .,
= o2 b Separatrix: AF e 1005 3
E=-30.6meV (C) E ' (d)E
1 1 1 1 1 1 0 P I | +1 0.00

0.2 -01 00 01 02 03 -30 -25 -20 -15
Energy (meV)

Momentum k (nm™)
FIG. 2 (color online). (a),(b) Electronic structure near the K
point of graphite (k, = 0). Two separatrix lines pass through six
saddle points. The Fermi level is located about 6 meV above the
upper separatrix. (¢) Constant energy contours in the (k,, k)
plane for k, =0 for e = —17, € = —25 (Fermi level), € =
—30.6 (upper separatrix), and € = —33 meV. (d) Classical cy-
clotron frequency hw. (€, k, = 0) at B = 100 mT in the relevant
energy interval. w, vanishes at the saddle point. Open circles
show the LL spacing, Ae; = €,,; — €;, as a function of e,
derived from the SWM model. Roughly 1 meV away from the
saddle point, the circles fall on the classical curve, Ae; =
hwc(61)~

vs = 38 meV, A = —8 meV. The band dispersion has six
saddle points at two different energies €,-g, and €,
which define two separatrices—isoenergetic lines separat-
ing regions with different topology. Fermi level crossing
these saddle points would imply the change in the topology
of the Fermi surface, which actually corresponds to the
Lifshitz transition of the neck-collapsing type. The Fermi
level is close to the upper separatrix, on which we focus our
attention hereafter, €;, = €,-5,. The single electron pocket
around the K point at €z > €, splits into four discon-
nected pockets when €5 goes below €. Figure 2(d) shows
the classical cyclotron frequency for the SWM dispersion
at k, = 0, which vanishes at € = Esp-

In the language of quantum mechanics, the k, = 0 en-
ergy spectrum consists of discrete Landau levels (LLs) €;.
In the quasiclassical approximation, €; can be found from
the Bohr-Sommerfeld quantization rule. The nth CR har-
monic corresponds to the transition over n levels, nhw, =
€+, — €, to the leading order in 7. The decrease of w.(€)
at € — €y, corresponds to an accumulation of LLs.
Nevertheless, A e does not approach zero, since the condi-
tion of the validity of the quasiclassical quantization,
|lw (e + hw,) — w.(€)] < w,.(€), holds only if € is not
too close to €. LLs always remain discrete, see
Fig. 2(d).

As we will show later, €x — €, is about 6 meV; i.e., it is
5 times larger than the microwave frequency, hw =
1.171 meV. Our classical approximation is justified in
this case. As a matter of fact, the quasiclassical approxi-
mation works better, the smaller w is. However, if micro-
wave frequency is too small, the harmonic structure will be
smeared by broadening of electronic states. The optimal
frequency, used in the experiment, is thus determined by an
appropriate compromise between these two competing
conditions.

Assuming that the absorbed power is proportional to the
real part of the conductivity, Reo ., (w), and calculating the
latter from the standard kinetic equation [8] in the simplest
relaxation time approximation for the collision integral
(see Supplemental Information [24]), we obtain

62 0 af' Fm |‘U, |2dk de
R _ _9) cl®x,n < R
e o (o) pry H:Z_w [( ae) (o = nw.)* +I7?
(2

where the k, integration is from —/(2a,) to 7/(2a.).
Both the cyclotron frequency, w,., and the cyclotron mass,
m. = —eB/(cw,), depend on € and k.. The basic fre-
quency w ., introduced earlier, is w. g = w.(€ = €, k, =
0). v, = v, (€, k,) is the Fourier harmonic of the electron
velocity, corresponding to the term « e~ "?<!, determined
from the solution of the unperturbed equation of motion,
Eq. (1). Finally, I" accounts for relaxation, and f(e) is the
Fermi function.
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Even without solving Eq. (1), it is easy to see that the
triangular symmetry of €(p) in the (p,, p,) plane fixes
v, =0 for n =3k, k= =*1,=%2,.... In Fig. 1(b), the
resonances at n = 3k are absent, which demonstrates that
the triangular symmetry is not broken in graphite. This is in
contrast with recent reports for a bilayer graphene [25-28],
even though it is formally described by the same single-
particle Hamiltonian (for a fixed k,) [29]. The same
symmetry fixes v, , to be real and v, , = *iv, , for n =
3k = 1, so the peaks at n =3k + 1 and n = 3k — 1 are
seen in the opposite circular polarizations of the micro-
wave field. This helps us to understand the observed dif-
ference in the intensities of the n=3k+ 1 and
n = 3k — 1 series. Indeed, for B > 0, when the electron
moves along the Fermi surface, shown in Fig. 2(b), in the
overall counterclockwise direction, it should be more
strongly coupled to the counterclockwise polarized radia-
tion. As both circular polarizations are equally present in
the incoming linearly polarized radiation, the spectrum is
fairly symmetric with respect to B — —B.

The present studies are restricted to bulk graphite, a
system with fixed Fermi level but in an apparent proximity
to the Lifshitz transition. An obvious experimental chal-
lenge would be to trace the CR response when changing the
Fermi level with respect to the separatrix energy, with an
attempt to tune the proximity to Lifshitz transition in
graphitic structures. This can be in principle envisaged
for electrostatically gated bilayer graphene [27,28] and/or
for bulk graphite under hydrostatic pressure [30].
Importantly, such experiments require no degradation of
the quality of the sample, which likely excludes the experi-
ments on, for example, chemically doped structures.

Besides the large number of harmonics, typical of a
classical motion near a saddle point, the proximity to the
Lifshitz transition also leads to some lowering of the
cyclotron frequency. Indeed, the fundamental cyclotron
frequency determined from the period in B~! of the spec-
trum, hw,.o/B = 2.05 meV/T, is slightly lower than its
parabolic-band limit at k, = 0, 2.24 meV/T. The latter
value, however, relies on the specific values of the parame-
ters of the SWM model. More apparent effects are deduced
from the analysis of the peak shapes (which are determined
by the integration over k).

As seen from Fig. 1(c), each peak has an abrupt cutoff on
the high-frequency side and a tail on the low-frequency
side. This contradicts the first intuition, based on the well-
known fact that the parabolic part of the bands becomes
steeper as k, increases from the K point towards the H
point. This pushes the LLs upwards as k, increases and
would result in a tail on the high-frequency side of each
peak in the absorption spectrum A (w, B) [31]. However,
the bottom of the conduction band [defined as e(p =
0,k,)] and the saddle point €y (k,) shift upwards upon
increasing k., as e(p =0, k,) = 2y,cosk.a,, y,<O0.
Thus, the Fermi level approaches the saddle point as k,

moves away from the k., =0 point and .(€p, k,)
decreases simultaneously, see Fig. 2(d). This provides a
tail on the low-frequency side of the peaks. Thus, the
suppression of w. near the Lifshitz transition is crucial to
interpret the peak asymmetry.

The spectrum derived from Eq. (2) is shown in Fig. 3,
with €, and I' as the only adjustable parameters—the
parameters of the SWM model were fixed [7]. The best
agreement is obtained for ey = —25 meV. If €p =
—24 meV, the peaks have no asymmetry, since w. (e =
—24 meV, k.) has a significant upturn on increasing k..
When € = —26 meV the falloff of large-n harmonics is
noticeably slower than the experimental one. In other
words, the closer €y is to €sp> the more harmonics are
seen in the spectrum. The frequency w.(€p =
—25 meV, k, = 0)/B = 2.03 meV/T agrees with the ex-
perimental value, 2.05 meV/T. The value €; = —25 meV
is also in good agreement with the one determined inde-
pendently from the charge neutrality condition (see
Supplemental Information [24]), e = —24 meV. A con-
stant value of I' = 20 ueV was assumed for the curve in
Fig. 3(a). Apparently, this does not describe well the am-
plitudes of peaks at n = 1, 2: the theoretical peaks are
narrower and thus more intense than the experimental
ones. Better agreement is obtained under the assump-
tion that T o /B (see Ref. [32] and Supplemental
Information [24]). Notably, the curve in Fig. 3(b) with

I' = 0.14/B[T] meV corresponds to the zero-field relaxa-
tion rate h/7p—) = 40 ueV. The extracted value of
Tp—o provides the zero-field dc conductivity o =
12X 10% (2 -m)~! (see Supplemental Information
[24]). This is fully consistent with typical literature data
[7,11] and implies a mean electron free path of 6 pum,
which is, notably, comparable or even longer than the
corresponding values reported for strictly 2D graphene-
based structures [27,33,34].

it
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FIG. 3. Derivative of the absorption with respect to B,
as calculated using Eq. (2) for different electronic broaden-
ings I'. (a) a constant broadening I' =20 ueV and

(b) I' = 0.14/B[T] meV.
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To conclude, we have introduced CR experiments as a
new tool to study Lifshitz transitions. We have shown how
the proximity to the Lifshitz transition manifests itself in
the CR spectrum of a model system, bulk graphite.
Namely, we have observed a multimode response, where
the basic CR mode is accompanied by many harmonics.
Using the standard SWM model for the electronic band
structure of graphite to analyze the data, we have deter-
mined the Fermi energy and estimated the electronic
broadening. The similarity between the band structure of
graphite near the K point and that of a bilayer graphene
logically suggests to probe Lifshitz transition in the latter
system by CR methods, and to shed more light on the
currently debated issue of spontaneous symmetry breaking
in bilayer graphene [25-28].

We thank M.-O. Goerbig and J.-N. Fuchs for collabora-
tion on the early stages of this work, and V. F. Gantmakher
and Yu.l. Latyshev for helpful discussions. Part of this
work was supported by RTRA DISPOGRAPH project.
M. O. acknowledges support from GACR P204/10/1020
and GRA/I0/E006 (EPIGRAT). FE. M.D.P. thanks
LPMMC for hospitality.

[1] L. M. Lishitz, Zh. Eksp. Teor. Fiz. 38, 1565 (1960).

[2] V.I. Makarov and Bar’yakhtar, Zh. Eksp. Teor. Fiz. 48,
1717 (1965), and references therein; C.W. Chu, T.F.
Smith, and W.E. Gardner, Phys. Rev. B 1, 214 (1970);
B. K. Godwal et al., Phys. Rev. B 57, 773 (1998).

[3] P.M.C. Rourke et al., Phys. Rev. Lett. 101, 237205
(2008); J. Wosnitza et al., Physica (Amsterdam) 403B,
1219 (2008).

[4] D. Yoshizumi et al., J. Phys. Soc. Jpn. 76, 063705 (2007);
Y. Okamoto, A. Nishio, and Z. Hiroi, Phys. Rev. B 81,
121102(R) (2010); S. E. Sebastian et al., Proc. Natl. Acad.
Sci. U.S.A. 107, 6175 (2010); M. R. Norman, J. Lin, and
A.J. Millis, Phys. Rev. B 81, 180513(R) (2010); D.
LeBoeuf et al., Phys. Rev. B 83, 054506 (2011).

[5] Y.M. Blanter et al., Phys. Rep. 245, 159 (1994).

[6] C. Liu et al., Nature Phys. 6, 419 (2010).

[7]1 N.B. Brandt, S.M. Chudinov, and Y.G. Ponomarev,
Semimetals 1: Graphite and Its Compounds (North-
Holland, Amsterdam, 1988).

(8]
(9]
[10]

[11]
[12]

[13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]
(21]

[22]

(23]

[24]

[25]
[26]
[27]
(28]

[29]
(30]

(31]
(32]

(33]
[34]

017602-5

A. A. Abrikosov, Fundamentals of the Theory of Metals
(North-Holland, Amsterdam, 1988).

M. Ya. Azbel’ and E. A. Kaner, Zh. Eksp. Teor. Fiz. 30,
811 (1956).

M. S. Khaikin, Zh. Eksp. Teor. Fiz. 41, 1773 (1961) [Sov.
Phys. JETP 14, 1260 (1962)].

X. Du et al., Phys. Rev. Lett. 94, 166601 (2005).

P. Neugebauer and A.-L. Barra, Appl. Magn. Reson. 37,
833 (2010).

J. K. Galt, W. A. Yager, and H. W. Dail, Jr., Phys. Rev. 103,
1586 (1956); S.J. Williamson et al., Solid State Commun.
4, 37 (1966); H. Suematsu and S. Tanuma, J. Phys. Soc.
Jpn. 33, 1619 (1972).

B. Lax and H.J. Zeiger, Phys. Rev. 105, 1466 (1957).

P. Nozieres, Phys. Rev. 109, 1510 (1958).

M. Inoue, J. Phys. Soc. Jpn. 17, 808 (1962).

G. Dresselhaus, Phys. Rev. B 10, 3602 (1974).

R.E. Doezema et al., Phys. Rev. B 19, 4224 (1979).

M. Orlita et al., Phys. Rev. Lett. 100, 136403 (2008).

P. Neugebauer ef al., Phys. Rev. Lett. 103, 136403 (2009).
D.S.L. Abergel and V.I. Fal’ko, Phys. Rev. B 75, 155430
(2007); L. A. Falkovsky, Phys. Rev. B 84, 115414 (2011).
R.Z. Sagdeev, D.A. Usikov, and G.M. Zaslavsky,
Nonlinear Physics: From the Pendulum to Turbulence
and Chaos (Harwood Academic Publishers, New York,
1988).

J.W. McClure, Phys. Rev. 108, 612 (1957); J.C.
Slonczewski and P.R. Weiss, ibid. 109, 272 (1958).

See Supplemental Material at http:/link.aps.org/
supplemental/10.1103/PhysRevLett.108.017602 for de-
tails of the SWM model as well as performed calculations
of the optical conductivity.

O. Vafek and K. Yang, Phys. Rev. B 81, 041401 (2010).
Y. Lemonik et al., Phys. Rev. B 82, 201408(R) (2010).
A.S. Mayorov et al., Science 333, 860 (2011).

M. Mucha-Kruczynski, I.L. Aleiner, and V.I. Fal’ko,
Phys. Rev. B 84, 041404 (2011).

M. Orlita et al., Phys. Rev. Lett. 102, 166401 (2009).

E. Mendez, A. Misu, and M. S. Dresselhaus, Phys. Rev. B
21, 827 (1980).

P. Kossacki, C. Faugeras, M. Kiihne, M. Orlita, A. A.L.
Nicolet, J. M. Schneider, D. M. Basko, Yu.I. Latyshev, and
M. Potemski, Phys. Rev. B 84, 235138 (2011).

T. Ando, J. Phys. Soc. Jpn. 38, 989 (1975).

K.I. Bolotin et al., Phys. Rev. Lett. 101, 096802 (2008).
S. A. Mayorov et al., Nano Lett. 11, 2396 (2011).


http://dx.doi.org/10.1103/PhysRevB.1.214
http://dx.doi.org/10.1103/PhysRevB.57.773
http://dx.doi.org/10.1103/PhysRevLett.101.237205
http://dx.doi.org/10.1103/PhysRevLett.101.237205
http://dx.doi.org/10.1016/j.physb.2007.10.288
http://dx.doi.org/10.1016/j.physb.2007.10.288
http://dx.doi.org/10.1143/JPSJ.76.063705
http://dx.doi.org/10.1103/PhysRevB.81.121102
http://dx.doi.org/10.1103/PhysRevB.81.121102
http://dx.doi.org/10.1073/pnas.0913711107
http://dx.doi.org/10.1073/pnas.0913711107
http://dx.doi.org/10.1103/PhysRevB.81.180513
http://dx.doi.org/10.1103/PhysRevB.83.054506
http://dx.doi.org/10.1016/0370-1573(94)90103-1
http://dx.doi.org/10.1038/nphys1656
http://dx.doi.org/10.1103/PhysRevLett.94.166601
http://dx.doi.org/10.1007/s00723-009-0092-5
http://dx.doi.org/10.1007/s00723-009-0092-5
http://dx.doi.org/10.1103/PhysRev.103.1586
http://dx.doi.org/10.1103/PhysRev.103.1586
http://dx.doi.org/10.1016/0038-1098(66)90101-3
http://dx.doi.org/10.1016/0038-1098(66)90101-3
http://dx.doi.org/10.1143/JPSJ.33.1619
http://dx.doi.org/10.1143/JPSJ.33.1619
http://dx.doi.org/10.1103/PhysRev.105.1466
http://dx.doi.org/10.1103/PhysRev.109.1510
http://dx.doi.org/10.1143/JPSJ.17.808
http://dx.doi.org/10.1103/PhysRevB.10.3602
http://dx.doi.org/10.1103/PhysRevB.19.4224
http://dx.doi.org/10.1103/PhysRevLett.100.136403
http://dx.doi.org/10.1103/PhysRevLett.103.136403
http://dx.doi.org/10.1103/PhysRevB.75.155430
http://dx.doi.org/10.1103/PhysRevB.75.155430
http://dx.doi.org/10.1103/PhysRevB.84.115414
http://dx.doi.org/10.1103/PhysRev.108.612
http://dx.doi.org/10.1103/PhysRev.109.272
http://link.aps.org/supplemental/10.1103/PhysRevLett.108.017602
http://link.aps.org/supplemental/10.1103/PhysRevLett.108.017602
http://dx.doi.org/10.1103/PhysRevB.81.041401
http://dx.doi.org/10.1103/PhysRevB.82.201408
http://dx.doi.org/10.1126/science.1208683
http://dx.doi.org/10.1103/PhysRevB.84.041404
http://dx.doi.org/10.1103/PhysRevLett.102.166401
http://dx.doi.org/10.1103/PhysRevB.21.827
http://dx.doi.org/10.1103/PhysRevB.21.827
http://dx.doi.org/10.1103/PhysRevB.84.235138
http://dx.doi.org/10.1143/JPSJ.38.989
http://dx.doi.org/10.1103/PhysRevLett.101.096802
http://dx.doi.org/10.1021/nl200758b

