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Here we show a mapping between waveguide theory and spin-chain transport, opening an alternative

approach to solid-state quantum information transport. By applying temporally varying control profiles to

a spin chain, we design a virtual waveguide or ‘‘spin guide’’ to conduct spin excitations along defined

space-time trajectories of the chain. We show that the concepts of confinement, adiabatic bend loss, and

beam splitting can be mapped from optical waveguide theory to spin guides, and hence to ‘‘spin splitters.’’

Importantly, the spatial scale of applied control pulses is required to be large compared to the interspin

spacing, thereby allowing the design of scalable control architectures.
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The application of quantum information science to tech-
nology promises to make a disruptive change to 21st
century society, comparable to the computer and telecom-
munications revolutions of the 20th century. To this end,
there is a pressing need to develop viable quantum net-
works. Here we focus on one quantum channel that is
ideally suited to solid-state quantum computing: the one-
dimensional spin chain.

Spin-chain physics offers a rich phenomenology. There
is a comprehensive review of the application of spin chains
to quantum information processing by Bose [1]. In general,
a spin chain is a one-dimensional array of spins that are
closely spaced to facilitate strong spin-spin interactions,
perhaps via dipole-dipole or exchange coupling. As the
interspin spacing is typically on atomic or near atomic
scales, individual addressability of the spins is either im-
possible or unscalable [2–5]. As a consequence of the
restriction on local control, many innovative schemes
have been studied for spin transport including schemes
with uniform spins and control over just the ends of the
chains (see Refs. [1,3–7]), parallel quantum channels [8,9],
or with engineered coupling schemes [10,11]. There has
also been related work in transport in coupled cavity
systems [12–14].

Here we outline a distinct alternative to the problem of
long-range quantum information transport inspired by op-
tical waveguides [15]. We demonstrate that it is possible to
create a virtual waveguide or ‘‘spin guide’’ in a one-
dimensional spin chain to guide individual spin excitations,
magnons [16], as depicted in Fig. 1(a). The demonstration
of this analogy is our central result.

Guiding of optical signals via waveguides and optical
fiber is of vital importance to modern communications and
sensing [17]. In addition, a vast array of devices have been

developed in the waveguide space including splitters
(fanout), Bragg mirrors, and fiber tapers. In optical wave-
guides, the propagation of light is confined in two dimen-
sions by a refractive index profile, and in the simplest form,
allowed to freely propagate in the third dimension. A
schematic of an optical waveguide is shown in Fig. 1(b).
Our analogy between spin-guide physics and waveguide
technology shows that essentially all of the development in
optical waveguides can be ported to the spin setting

FIG. 1 (color online). (a) Schematic of a spin guide. A one-
dimensional line of spins is positioned below a gate array. The
gate potentials are varied, breaking the translation symmetry of
the chain, to define a spin guide capable of carrying an excita-
tion. The size of the gates is expected to be much larger than the
interspin spacing so that individual control of the spins is not
possible. (b) A conventional waveguide is defined by a local
change in the refractive index of a medium. This can be thought
of as defining a two-dimensional pathway. (c) A spin guide is
defined by a 1þ 1 dimensional variation in the spin properties,
mimicking the refractive index profile of an optical waveguide.
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opening a new vista for solid-state spin devices and a
fundamentally new approach to the manipulation of exci-
tations in spin chains.

To realize the analogy between a spin guide and an
optical waveguide, we envisage a spatially and time-
varying potential that is controllably swept across the
one-dimensional spin chain. This potential breaks the de-
generacy of the spins and is depicted schematically in
Fig. 1(c). In essence, the two-dimensional waveguide is
replaced by a 1þ 1 dimensional spin guide, where the time
axis for the spin guide should be thought of as equivalent to
the spatial propagation axis for the waveguide. Note that
although optical waveguides can usually house many ex-
citations, we only consider the one-magnon subspace here.

There is considerable flexibility about the choice of
applied magnetic field, and this necessarily affects the
details of propagation, but the central results of the analogy
are unchanged if alternate potentials are chosen. For sim-
plicity we choose a magnetic field defined by a Pöschl-
Teller (PT) potential, for which numerous analytical
results are known [18–20], acting on a one-dimensional
Heisenberg chain. In general any potential that can be used
for optical waveguiding can be translated into the spin-
guide model, and any spin chain that supports magnons
used as the medium. By adiabatically varying the PT
potential as a function of time, the magnon is guided
through a space-time map in a fashion analogous to con-
ventional optical waveguiding. It should be noted that the
use of magnons with Gaussian spatial distributions [21],
and adiabatic following of a locally applied control field
[22,23], have been considered, but we are not aware of any
scheme that has applied the physics of optical waveguiding
to coherent evolution of a solid-state excitation as we
describe here.

The Hamiltonian for a system of N spin 1=2 particles
with an applied field is

H ¼ �J
XN

n¼1

Sn � Snþ1 � Bðn; tÞSzn; (1)

where J is the exchange interaction strength, Sn and S
z
n are

operators for the total spin and the z projection, respec-
tively, for spin n, and Bðn; tÞ is the time-varying magnetic
field applied to spin n. As the control fields are slowly
varying across the spin-spin separation, we can replace the
discrete spin-chain Hamiltonian Eq. (1) with its continuum
counterpart H and solve the Schrödinger equation,

i
@

@t
c ¼ H c ¼

�
Bðx; tÞ � J

2

@2

@x2

�
c ; (2)

for the evolution as a function of position, x. This is much
less computationally expensive for many spins, yet still
captures all of the essential features of our scheme. The
continuum limit is important for practical cases, as the
spins are typically separated by one, or a few, lattice sites,

but the control fields are generated from surface gates and
hence span many sites.
We first consider the case of a single spin guide. The form

of the PT potential is Bðx; tÞ ¼ �B0 sech
2f½x� x0ðtÞ�=wg,

where the time dependence is determined by the moving
center of the potential, x0ðtÞ. For simplicity in what
follows, we set J ¼ 1, B0 ¼ 1, and w ¼ 1.
The magnon state is initialized as the lowest energy

eigenstate of the moving PT potential, i.e.,

c ðx; t ¼ 0Þ ¼ eikx sech½x� x0ð0Þ�=
ffiffiffi
2

p
; (3)

where x0ð0Þ is the center of the excitation (equivalent to
the center of the spin guide), and the momentum k is set
to match the initial velocity of the spin guide. Throughout,
we solve numerically for c ðx; tÞ and display jc ðx; tÞj2.
To study the effectiveness of the channel, we examine

the spin-guide fidelity F. The fidelity is given by the over-
lap between the initial wave function c ðx; t ¼ 0Þ and the
excitation at the final time tf (shifted back to the original

location, c �½xþ x0ðtfÞ; t ¼ tf�):

F ¼
��������
Z 1

�1
c ðx; t ¼ 0Þc �½xþ x0ðtfÞ; t ¼ tf�dx

��������
2

: (4)

An important concept with optical fibers is bend loss,
i.e., the extent to which an optical fiber can be bent before
the mode ceases to be guided, and is therefore lost. The
equivalent case is accelerating the magnon by investigating
a single spin guide with a ‘‘corner.’’ The center of the spin
guide is given by

x0ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ tan2�ðt� tf=2Þ2

q
þ tan�ðt� tf=2Þ; (5)

where r indicates the sharpness of the corner, � is the angle
through which the spin guide changes direction, and tf is

the final time. The excitation is initially centered at posi-
tion x0ð0Þ, with momentum k ¼ @x0ðtÞ=@tjt¼0.
Figure 2(a) utilizes Eq. (5) to show how the fidelity

decreases with increasing angle through which the spin
guide moves �. Two lines are shown: r ¼ 0 (discontinuous
corner) always has lower fidelity than r ¼ 2 (smooth cor-
ner). As the corner is made more abrupt, the fidelity
decreases, in accordance with our intuition from optical
bend-loss results. The evolution with different examples of
r and � is shown in Figs. 2(b)–2(d).
To complete the connection between spin guides and

waveguides, we now consider two-port devices; i.e., we
show how to create a ‘‘spin splitter’’ analogous to beam
splitters. We first examine a spin splitter with a parallel
component; see Fig. 3. The center of the potentials of the
left and right spin guides are given by

xrightðtÞ¼�xleftðtÞ¼
(
fðx;tÞ t<tf=2

fðx;tf� tÞ t� tf=2;

fðx;tÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþð4mtþd�xlÞ2=16

q
�mtþðdþxlÞ=4;

(6)
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where m is the slope and d is the separation between the
parallel components of the spin guide. The magnon is
initially in the left spin guide, i.e., c ðx ¼ xleftð0Þ; t ¼ 0Þ,
and the initial momentum is matched to the slope of the left
spin guide t ¼ 0, that is, k ¼ @xleftðtÞ=@tjt¼0. In Fig. 3 the
solid lines show xleft and xright, and the dashed lines show

xleft � 2 and xright � 2, which can be intuitively thought of

as the ‘‘edge’’ of the spin guides. The excitation, after
initially starting in the left spin guide, oscillates between
spin guides, before leaving primarily through the right spin

guide. This oscillation can be considered as the equivalent
of evanescent tunneling as seen in coupled waveguides.
As expected from coupled waveguides, the length of the
parallel section compared to the oscillation frequency, set
by the separation between spin guides, controls the final
output distribution.
To quantify the spin-guide coupling, consider two par-

allel spin guides, separated by distance d, with an initial
excitation which has zero momentum, k ¼ 0. The oscilla-
tion frequency into and out of the left waveguide is found
by defining an effective Hamiltonian in the basis
fc leftðx; tÞ; c 0

rightðx; tÞ; . . .g, where, c 0
rightðx; tÞ is determined

by Gram-Schmidt orthonormalization relative to c leftðx; tÞ
and c rightðx; tÞ, which are given by Eq. (3). The resulting

oscillation frequency is (given by the difference between
the eigenvalues of the effective Hamiltonian),

�ðdÞ¼ csch2d½cosh3dþ4dsinhd�ð8d2þ1Þcoshd�
cosh2d�2d2�1

: (7)

This function monotonically decreases from �ð0Þ ¼
16=15 to �ðdÞ � 4e�d for large d.
A more practical form of spin splitter than that in

Fig. 3 is an X junction of spin guides. Two straight
spin guides of length 2xl cross at an angle �,
where xR!LðtÞ¼�xL!RðtÞ¼xl=2� tanð�=2Þt. The initial
excitation is placed in the left-to-right spin-guide, such that
x0ð0Þ ¼ xL!Rð0Þ, with momentum kL!R ¼ tanð�=2Þ.
The evolution for the X junction is shown in Fig. 4, for

time tf ¼ xl= tanð�=2Þ. The relevant metrics for the spin

splitter are shown in Fig. 4(a) as a function of spin-guide
angle. The reflection and transmission coefficients R and T,
as defined by Eq. (4), and the total fidelity is Ftot ¼ Rþ T.
The behavior of R and T can be understood with regard to
Landau-Zener theory [24,25]. When � is large, the spin
splitter shows a nonadiabatic crossing; therefore, the re-
flection (transmission) coefficient approaches zero (one)
for large �, Fig. 4(c). Conversely, when � is small, the spin
guides approach an almost parallel state. As such, the
excitation behaves similarly to Fig. 3, where the excitation
oscillates between spin guides and therefore the fidelity
depends strongly on �. In contrast to conventional Landau-
Zener, this is not the adiabatic regime as the spin guides are
forced to cross and the interaction time increases with
decreasing angle so that oscillations are always observed.
An important spin-splitting ratio is 50=50 (T ¼ R), and

Fig. 4(a) shows many points where this ratio is approxi-
mately achieved, although with varying fidelity. An ex-
ample, with � ¼ 10�0:7976 is shown in Fig. 4(b),
corresponding to the value of � indicated by the circle
intersecting the horizontal and vertical lines in Fig. 4(a),
when R � T � 0:491 (Ftot � 0:982). These are slightly
less than 0.5 due to scattering into nonbound modes. By
choosing a sufficiently small �, one can generate a 50=50
spin splitter with a T and R arbitrarily close to 0.5.
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FIG. 2 (color online). (a) Fidelity as a function of corner angle
�, for two values of r: r ¼ 0 (discontinuous corner, solid line)
and r ¼ 2 (smooth corner, dashed line). Fidelity decreases with
increasing angle � in accordance with conventional optical bend
loss. Four examples of magnon propagation are shown:
(b) r ¼ 0, � ¼ 0:15 (fidelity 0.769), (c) r ¼ 0, � ¼ 0:5 (fidelity
0.106), (d) r ¼ 2, � ¼ 0:15 (fidelity 0.979), (e) r ¼ 2, � ¼ 0:5
(fidelity 0.401). In all cases, tf ¼ 10.
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FIG. 3 (color online). Magnon evolution through a spin splitter
with parallel component. Oscillatory behavior of the excitation
between the spin guides is observed. Here, r ¼ 0:5, d ¼ 1:2,
m ¼ 0:3.
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Finally, using our spin splitter we demonstrate the fun-
damental quantum mechanical characteristic of a beam
splitter: the interference of paths due to their relative phase.
Such a demonstration is necessary to prove that neither
the spin guides nor the spin splitters degrade the quantum
mechanical phase of the magnons. The phase is produced
by introducing a Gaussian time-independent perturbation
to the potential, which affects the right-to-left spin guide
before the interaction takes place. This spatially localized
potential is designed to mimic the effect of a phase shifter
in a waveguide, and can equally be thought of as a proto-
type for the use of spin guides in interferometric sensing.
The perturbation is a Gaussian of height d and width xl=10,
as indicated in Figs. 5(a)–5(e). When d ¼ 0, the depth of
the two spin guides is identical, and no additional phase
shift between the spin guides is incurred. A nonzero d
therefore imparts a phase shift. The wave function is
initialized as c ðx;t¼0Þ¼ 1ffiffi

2
p ½c L!Rðx;0Þþc R!Lðx;0Þ�.

Figures 5(a)–5(e) show the evolution for specific values
of d, illustrating the characteristic oscillations in the
populations. These are indicative of conventional interfero-
metric evolution. Note that Fig. 5(d), a phase shift of �=2,
shows magnon evolution that is essentially the time rever-
sal of that presented in Fig. 4(b), as is required for unitary

evolution in a beam-splitting device. The fraction in the left
and right halves of the spin chain as a function of the depth
d is given in Fig. 5(f), again showing an obvious connec-
tion between the induced phase shift and the resultant
output port of the spin splitter. This phase interference
proves the quantum mechanical nature of the spin splitter,
thereby completing the analogy between optical wave-
guides and the behavior of spin guides.
We have shown that a collective excitation within a linear

spin chain can be confined and manipulated using localized
field modulation. Specifically, we see that the space-time
behavior of this one-dimensional excitation mimics effects
traditionally observed with linear optics experiments (in two
spatial dimensions). Using suitably chosen fieldmodulations
in space and time, we can replicate optical guiding modes,
beam splitting, and even phase interference. This technique
provides a new conceptual framework and method for con-
trolling spin excitations using field modulation over dis-
tances much greater than the spin-spin separation.
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