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Ordering of the frustrated classical Heisenberg model on the triangular lattice with an incommensurate

spiral structure is studied under magnetic fields by means of a mean-field analysis and a Monte Carlo

simulation. Several types of multiple-q states including the Skyrmion-lattice state is observed in addition

to the standard single-q state. In contrast to the Dzyaloshinskii-Moriya interaction driven system, the

present model allows both Skyrmions and anti-Skyrmions, together with a new thermodynamic phase

where Skyrmion and anti-Skyrmion lattices form a domain state.
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Ordering of geometrically frustrated magnets has at-
tracted recent interest [1–3]. The antiferromagnetic (AF)
Heisenberg model on the triangular lattice is a typical
example of two-dimensional (2D) geometrically frustrated
magnets. With only AF nearest-neighbor (NN) interaction,
the ground state of this system is the three-sublattice 120�
structure, which is commensurate to the underlying lattice.
Under magnetic fields, the ordered state still keeps the
three-sublattice structure and leads to a rich phase
diagram [4,5].

When further-neighbor interactions become dominant,
the ground state often takes an incommensurate spiral
structure. In recent experiments on the triangular-lattice
AF NiGa2S4, an incommensurate spiral state due to strong
further-neighbor interaction has been reported [6–8]. In
this compound, the magnitude of the AF third-neighbor
interaction jJ3j is larger than the ferromagnetic NN inter-
action J1, jJ3j=J1 � 5. In another compound NiBr2, an
incommensurate state due to the AF third neighbor and
ferromagnetic NN interactions were reported where
jJ3j=J1 � 0:262 [9,10].

From a symmetry viewpoint, an important difference of
the incommensurate spiral from the 120� structure is that
the ground state possesses a threefold degeneracy with
respect to the choice of three equivalent directions of
wave vectors on the lattice. Generally, a phase transition
related to the breaking of such a discrete degeneracy could
occur even in a 2D Heisenberg model. Indeed, the classical
J1-J3 model in zero field exhibits a first-order transition
associated with a breaking of such a threefold C3 lattice
symmetry. The ordered state is a single-q state where one
of three equivalent wave vector directions is chosen
[11–13].

This threefold degeneracy could also be a source of
exotic ordered states, e.g., various types of multiple-q
states where multiple wave vectors coexist. Although
multiple-q states were not reported in previous zero-field
calculations, they might be realized under applied fields.
Multiple-q states are generally incompatible with the fixed

spin-length condition jSij ¼ 1 and not favored at lower
temperatures in the classical system, whereas they might
be stabilized at moderate temperatures by thermal
fluctuations.
In this Letter, based on a mean-field calculation and a

Monte Carlo simulation, we show that several types of
multiple-q states are indeed stabilized under magnetic
fields, and that one of them corresponds to the so-called
‘‘Skyrmion-lattice’’ state [14–23].
We focus here on the triangular-lattice J1-J3 or J1-J2

model in a magnetic field of intensity H whose
Hamiltonian is given by

H ¼ �J1
X
hi;ji

Si � Sj � J2;3
X
hhi;jii

Si � Sj �H
X
i

Si;z; (1)

where
P

hi;ji and
P

hhi;jii mean the sum over the NN and the

third-neighbor (or the second-neighbor) pairs, respectively.
We consider classical Heisenberg spins Si¼ðSi;x;Si;y;Si;zÞ
with jSij ¼ 1. An incommensurate ground state appears, in
the J1-J3 model, for the ferromagnetic NN interaction
J1 > 0 and the AF third-neighbor interaction J3 < 0 with
J1=jJ3j< 4, while, in the J1-J2 model, for the AF J2 with
�1< J1=jJ2j< 3.
We first perform a mean-field analysis based on the

method of Reimers et al. [24,25]. Up to quartic order, the
Landau free energy of the model is given by

F

N
¼ 1

2

X
q

½3T � Jq�j�qj2 �H�0;z

þ 9T

20

X0

fqg
½�q1 ��q2�½�q3 ��q4�; (2)

where �q is the order parameter corresponding to the

Fourier magnetization given by �q ¼ hSqi with Sq ¼
1
N

P
iSi expð�iq � riÞ (N the number of spins). The sumP0

fqg runs over all qi’s satisfying
P

iqi ¼ 0, and Jq is the

Fourier transform of the exchange interaction.
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From the quadratic term of the free-energy expansion,
one sees that the Fourier mode corresponding to the maxi-
mum Jq becomes unstable at Tc ¼ 1

3 Jq� where q� is the

critical wave vector. In the J1-J3 model, q� appears along
the direction of the NN bonds with jq�j ¼ 2

a cos
�1½14 ð1þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2J1
J3

q
Þ� (a is the lattice constant), while in the J1-J2

model it appears along the second-neighbor direction with

jq�j ¼ 2
a
ffiffi
3

p cos�1½� 1
2 ð1þ J1

J2
Þ�. Note that, reflecting the C3

symmetry of the lattice, q� is degenerate as �q�1, �q�2
and �q�3.

Just below the transition temperature, one may neglect
all wave vectors other than the three critical modes q�i and
the uniform q ¼ 0 mode. Within this approximation, we
find three metastable ordered states in addition to the
paramagnetic state. These ordered states are characterized
by the number of wave vectors appearing in the xy com-
ponent; they are single-q, double-q, and triple-q states.

(i) The single-q state.—Spins form an umbrella structure
where the xy component forms a single-q spiral charac-
terized by one of the three q�i ’s, while the z component
consists of a uniform q ¼ 0 component mz along H. This
state is compatible with the condition jSij ¼ 1. In fact, the
ground state of our model turns out to be this single-q state
irrespective of the field intensity.

(ii) The double-q state.—Here the xy component is a
superposition of two spirals with, e.g,�q�1 and�q�2, while
the z component forms a lineally polarized spin density
wave with �q�3 complementary to the xy component with

an additional uniform component.
(iii) The triple-q state.—This state is a superposition of

three (distorted) spirals characterized by wave vectors q�1,
q�2, and q�3 with an additional uniform component along H.

In contrast to the single-q and the double-q states, three
spiral planes are perpendicular to the xy plane and rotate by
120 degrees with each other. By using arbitrary three unit
vectors lying on the xy plane, ei (i ¼ 1, 2, 3) satisfyingP

iei ¼ 0, it is given by

Si;xy ¼ Ixy
X3

j¼1

sinðq�j � ri þ �jÞej; (3a)

Si;z ¼ Iz
X3

j¼1

cosðq�j � ri þ �jÞ þmz; (3b)

where we introduced the phase factors �i (i ¼ 1–3) sat-
isfying the constraint cosð�1 þ �2 þ �3Þ ¼ �1, Ixy and Iz
being T-dependent constants.

Interestingly, this triple-q state spin configuration just
corresponds to the ‘‘Skyrmion lattice’’ recently discussed
in conjunction with several ferromagnetic compounds
MnSi, FeCoSi, and FeGe under magnetic fields [19–22].
In these compounds, the Skyrmion lattice is stabilized by
the antisymmetric Dzyaloshinskii-Moriya (DM) interac-
tion. In contrast, the Skyrmion lattice in the triple-q state

of the present model is realized via the frustrated symmet-
ric exchange interaction. Note that Skyrmions of our model
can take both signs, e.g., Skyrmions and anti-Skyrmions,
because our Hamiltonian (1) keeps the mirror symmetry in
the xy spin component. Such Z2 symmetry of the
Hamiltonian, which is absent in the DM system, is sponta-
neously broken in the triple-q state. Note that the direction
of ei in Eq. (3) is independent of the wave vector q

�
i . In the

case of the DM system, on the contrary, ei is fixed to be
perpendicular to q�i to minimize the DM interaction, lead-

ing to a helix.
In the triple-q state, the state keeps the C3 symmetry of

the lattice, while it is broken in the single-q and the
double-q states. More precisely, C3 symmetry is broken
only in the xy component in the single-q state, whereas it is
broken both in the xy and z components in the double-q
state. The change in �i of Eq. (3) induces a translation of
the Skyrmion lattice.
By comparing the free energy of these ordered states, we

construct a mean-field phase diagram in the T-H plane. We
find that the single-q state always has a lower free energy
than those of the double-q and the triple-q states. Thus,
within the mean-field approximation, multiple-q states are
not stabilized. Meanwhile, we find that the free-energy
difference between the single-q and the triple-q states
becomes small at moderate fields, similarly to the case of
a mean-field analysis of the DM ferromagnet [19]. Hence,
the fluctuation effect not taken into account in the
mean-field approximation might eventually stabilize the
multiple-q states.
In order to further clarify the situation, we perform a

Monte Carlo (MC) simulation based on the standard heat-
bath method combined with the over-relaxation method.
Our unit MC step consists of one heat-bath sweep and ten
over-relaxation sweeps. The lattice is a L� L triangular
lattice with 36 	 L 	 288 with periodic boundary condi-
tions. Typically, a single run contains 2–4� 105 MC steps
per spin (MCS) at each temperature, while averages are
made over 3–5 independent runs.
The resulting T-H phase diagram of the J1-J3 model is

shown in Fig. 1 for J1=J3 ¼ �1=3. We find that, in addi-
tion to the single-q state, the double-q and the triple-q
states are stabilized under magnetic fields due to fluctua-
tions. In the low temperature limit, the single-q state is
always stable consistently with the fixed spin-length con-
dition. At larger fields, the single-q phase cuts in between
the paramagnetic and the double-q phases. A similar phase
diagram is obtained also for the J1-J2 model (see the online
Supplemental Material [26]).
The computed spin structure factors are shown in Fig. 2

for each case of the single-q, the double-q and the triple-q
phases. As can be seen from the figure, all of the qualitative
features of the mean-field analysis are met here. It should
be noticed that sharp spots observed at q ¼ q�i are not

true Bragg peaks because we are dealing with the 2D
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Heisenberg model. If one recalls the fact that the ordered
states possess a continuous degeneracy due to the Uð1Þ
symmetry associated with spin rotations (around z) and
translations, the observed sharp spots should be quasi-
Bragg spots associated with power-law spin correlations.

We show in Figs. 3(a) and 3(c) typical real-space spin
configurations obtained in our MC simulation for the
triple-q state. One can see that the z component, shown
by the gray (color) scale, often takes an opposite direction
to the field direction forming a triangular superlattice ex-
pressed by the color black. The xy component represented
by arrows forms a vortex (a) or an antivortex (c) pattern

around the black spots. Such a configuration is indeed the
Skyrmion (or anti-Skyrmion) lattice predicted by the
mean-field calculation as a metastable structure (3). In
Figs. 3(b) and 3(d), we show the corresponding
Skyrmion-density pattern. The local Skyrmion density is
defined here as the directed area of the sphere surface
spanned by three spins on every elementary triangle on
the lattice [27]. As can be seen from the figure, in the
triple-q state the Skyrmion (or anti-Skyrmion) forms a
triangular lattice with a lattice spacing 4�ffiffi

3
p jq�j . The total

sum of the Skyrmion density over the entire system is
nonzero, being negative for the Skyrmion lattice and posi-
tive for the anti-Skyrmion lattice. In the single-q and the
double-q phases, this sum turns out to vanish.
The T-H phase diagram of Fig. 1 contains a new phase

labeled Z, right to the triple-q phase, which is not predicted
in the mean-field analysis even as a metastable state. Its
existence is suggested from, e.g., the specific-heat shown
in Fig. 4(a), where clear double peaks are observed at

’ 0:39jJ3j and ’ 0:42jJ3j. The total scalar chirality, � 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð 1
2N

P
i�iÞ2i

q
with �i ¼ Si1 � ðSi2 � Si3Þ where i1 � i3 are

three sites on an elementary triangle i (both upward and
downward), can be regarded as an order parameter of the
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FIG. 2 (color online). The intensity plot of the spin structure
factor for J1=J3 ¼ �1=3, in the single-q phase [(a),(b)], the
double-q phase [(c),(d)], and the triple-q phase [(e),(f)]. The
lattice size is L ¼ 72. The upper and lower figures represent the
spin structure factors of the xy component S?ðqÞ ¼
1
N

P
�¼x;yhj

P
iSi;�e

�iq�ri j2i and of the z component SkðqÞ ¼ 1
N �

hjPiSi;ze
�iq�ri j2i. The gray (color) scale represents

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S?;kðqÞ

q
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FIG. 1 (color online). Phase diagram of the J1-J3 model with
J1=J3 ¼ �1=3 in the temperature-field plane, obtained by a
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FIG. 3 (color online). Typical real-space spin configurations
(left figures) and the intensity plots of the Skyrmion density
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the thermal noise. The lattice size is L ¼ 72.
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Z2 mirror symmetry. As shown in Fig. 4(b), � grows at a
lower transition temperature, indicating that the Z2 mirror
symmetry is preserved in the Z phase.

A typical spin configuration in the Z phase is shown in
Fig. 3(e). The z component forms a triangular superlattice
similar to the triple-q phase, whereas the xy component
remains disordered (paramagnetic). The corresponding
spin structure factors shown in Figs. 4(c) and 4(d) also
indicate that the xy component exhibits very broad spots in
contrast to the sharp spots of the z component. Thus, in the
Z phase only the z component retains a quasi-long-range
order similar to the triple-q phase, while the xy component
remains disordered with a finite correlation length of about
20 lattice spacings. The Skyrmion-density pattern of the Z
phase is shown in Fig. 3(f), where one sees that Skyrmions
and anti-Skyrmions are mixed in the form of domains. The
domain size is comparable to the transverse (xy) spin
correlation length deduced from the width of the peak of
S?ðqÞ [Fig. 4(c)]. Thus, the Z phase is a domain state
consisting of both Skyrmion and anti-Skyrmion lattices,
where the total Skyrmion number remains zero. At the
para-Z transition, the Uð1Þ �Uð1Þ symmetry associated
with the two independent �i variables of Eq. (3) is broken
in an algebraic manner. This observation suggests that the
para-Z transition is actually of the Kosterlitz-Thouless
type.

We now wish to compare the Skyrmion-lattice state of
the present model with that of the DM system as observed
in MnSi, FeCoSi or FeGe [19–22]. There are two important
differences between the Skyrmion lattice of the two sys-
tems: (i) First, the Skyrmion lattice of the present model is
much denser than its DM counterpart, with a smaller lattice

constant of �2
ffiffiffi
3

p
a (see Fig. 3). In the DM-driven system,

the lattice constant is typically an order of magnitude

larger, because the DM interaction is usually considerably
weaker than the dominant exchange interaction. Since the
anomalous Hall conductivity due to Skyrmion texture is
proportional to the Skyrmion density [28], larger Hall
conductivity is expected if the Skyrmion (or anti-
Skyrmion) lattice in the triple-q state could be stabilized
in the appropriate metallic materials by the present mecha-
nism. (ii) Second, the Z2 mirror symmetry is absent in the
DM system, while it is kept as a Hamiltonian symmetry in
the present model, being spontaneously broken in the
triple-q state. Its consequence is that both Skyrmion and
anti-Skyrmion lattices, interconnected via the Z2 symme-
try, are possible in the present model, together with a new Z
phase where Skyrmion and anti-Skyrmion lattices form a
domain state.
Triangular-lattice compounds NiGa2S4 and NiBr2 might

be candidates of the multiple-q states. Although the ob-
served zero-field properties of NiGa2S4 do not seem to be
consistent with a simple classical J1-J3 model in view of
the absence of an expected first-order transition [8,11–13],
its local spin structure is certainly an incommensurate
spiral. Then, the multiple-q structures might possibly be
formed under magnetic fields, the required field roughly
estimated to be 30–50 T. In the case ofNiBr2, the estimated
value jJ3j=J1 ’ 0:262 [10] is much less than that of the
present study jJ3j=J1 ¼ 3. Although larger jJ3j=J1 seems
favorable to the formation of the triple-q state, further
theoretical and experimental studies are desirable to clarify
the general dependence on jJ3j=J1.
We finally note that within a mean-field approximation

the multiple-q states can be obtained as metastable states
only by assuming the threefold degeneracy of the ordered
state. This suggests that the multiple-q states and the
Skyrmion lattice could be realized not only in the triangu-
lar lattice, but also in other lattices with a trigonal symme-
try, e.g., the honeycomb and the kagome lattices.
In summary, we studied the ordering of triangular-lattice

Heisenberg magnets with an incommensurate spiral struc-
ture. On the basis of a mean-field analysis and a
Monte Carlo simulation, we found several multiple-q
phases under magnetic fields in addition to the standard
single-q phase. The spin structure in the triple-q phase
is the Skyrmion (or anti-Skyrmion) lattice. In contrast to
the DM-induced Skyrmion lattice, the present model keeps
the Z2 mirror symmetry, which enables both Skyrmions
and anti-Skyrmions and gives rise to a new Z phase, a
domain state consisting of Skyrmion and anti-Skyrmion
lattices.
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