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We consider a spin-1=2 tube (a three-leg ladder with periodic boundary conditions) with a Hamiltonian

given by two projection operators—one on the triangles and the other on the square plaquettes on the side

of the tube—that can be written in terms of Heisenberg and four-spin ring exchange interactions. We

identify 3 phases: (i) for strongly antiferromagnetic exchange on the triangles, an exact ground state with a

gapped spectrum can be given as an alternation of spin and chirality singlet bonds between nearest

triangles; (ii) for ferromagnetic exchange on the triangles, we recover the phase of the spin-3=2

Heisenberg chain; (iii) between these two phases, a gapless incommensurate phase exists. We construct

an exact ground state with two deconfined domain walls and a gapless excitation spectrum at the quantum

phase transition point between the incommensurate and dimerized phases.
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The projection operator approach to spin models pro-
vided significant results on the ground state properties of
quantum magnets. Examples include the Majumdar-Ghosh
Hamiltonian [1], a spin-1=2 antiferromagnetic Heisenberg
chain where the two exact ground state wave functions are
given by a product of purely nearest-neighbor valence
bonds (pairs of S ¼ 1=2 spins forming a singlet) with a
gapped excitation spectrum, in accordance with the Lieb-
Schultz-Mattis theorem [2]. The exact ‘‘valence bond
solid’’ ground state in the Affleck-Kennedy-Lieb-Tasaki
model [3] with gapped excitations is an explicit realization
of Haldane’s conjecture for S ¼ 1 Heisenberg chains [4].
Further examples include the two-dimensional Shastry-
Sutherland model [5] which has been realized in
SrCu2ðBO3Þ2 [6]. In the pyrochlore lattice, Yamashita
and Ueda have introduced a model with a macroscopically
degenerate ground state [7]. In all these cases, the
Hamiltonian is a sum of projection operators [8] and
positive semidefinite by construction, so that any state
that has 0 energy is an exact ground state.

Here we extend this approach to a model of spin-1=2’s
arranged in a three-leg tube geometry, given by the

H ¼ K�

XL
i¼1

Pi þKh

XL
i¼1

X3
j¼1

Rði;jÞðiþ1;jÞðiþ1;jþ1Þði;jþ1Þ (1)

Hamiltonian (see Fig. 1). The tube has L triangles, and
periodic boundary conditions are assumed. The projector

Pi ¼ ð4~Si � ~Si � 3Þ=12, where ~Si ¼
P

3
j¼1 Si;j is the spin

operator on the ith triangle, gives 1 if the triangle has a
total spin of 3=2 and 0 if the spin is 1=2. The projection R�

acts on the squares that are on the surface of the tube.
We denote S� ¼ P

ði;jÞ2�Si;j as the sum of the spin

operators belonging to the � square plaquette, and
then R� ¼ ðS� � S�ÞðS� � S� � 2Þ=24 projects onto the

subspace of states where the total spin of the plaquette �
is 2 and gives 0 if the spin is 0 or 1 (i.e., if a pair of spins on
the � square form a valence bond). The expanded
Hamiltonian using the spin operators reads

H ¼ XL
i¼1

X3
j¼1

fJ?Si;j � Si;jþ1 þ J1Si;j � Siþ1;j

þ J2ðSi;j � Siþ1;jþ1 þ Si;j � Siþ1;j�1Þ
þ JRE½ðSi;j � Siþ1;jÞðSi;jþ1 � Siþ1;jþ1Þ
þ ðSi;j � Si;jþ1ÞðSiþ1;j � Siþ1;jþ1Þ
þ ðSi;j � Siþ1;jþ1ÞðSi;jþ1 � Si;jþ1Þ�g; (2)

where the intratriangle J? ¼ 5Kh=6þ 2K�=3, the inter-
triangle J1 ¼ 5Kh=6 and J2 ¼ 5Kh=12, and the ring
exchange interaction JRE ¼ Kh=3. We set Kh ¼ 1 in the
following.
Spin tubes [9–16] are interesting not only since there

exist experimental realizations [17] but also as they are the
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FIG. 1 (color online). The spin tube with a snapshot of the
valence bond covering from the exact spin-chirality dimerized
ground state. The shaded plaquettes are not satisfied in this
particular configuration, and only quantum resonance with other
configurations will make all the plaquettes satisfied.

PRL 108, 017205 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

6 JANUARY 2012

0031-9007=12=108(1)=017205(5) 017205-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.017205


next step after spin ladders towards two dimensions (2D).
Batista and Trugman have recently studied the
Hamiltonian that is a sum of the R� operators over all
the squares of the square lattice and shown that a class of
states consisting of nearest-neighbor valence bond cover-
ings, where each square plaquette shares a valence bond,
have zero energy, i.e., are exact ground states [18,19]. The
spin tube is identical to the square lattice with period three
wrapped in one direction.

Exact diagonalization (ED) of the Hamiltonian (1) up to
L ¼ 12 triangles (36 sites) showed for K� ¼ 0 an unusual
result: For an odd number of triangles it revealed a 0 energy
spin-1/2 doublet at k ¼ 0 momentum, while for an even
number we find three singlet ground states: one at k ¼ 0
and two at k ¼ �, as shown in Fig. 2(a). The appearance of
0 energy eigenstates means that they have zero projections
with all of the R� operators in the Hamiltonian. As there is
no static covering of valence bonds on the spin tube where
each plaquette is satisfied, this points to a feature that was
not encountered in projection Hamiltonians so far. Even
more striking is the appearance of the 0 energy ground
state for the tubes with an odd number of triangles, as in
this case necessarily a spin is left unpaired. In the follow-
ing, we will show that this apparent contradiction is
resolved due to the quantum mechanical nature of the
valence bonds and that the existence of the 0 energy ground

state in the odd size system is related to the fact thatK�¼0
is a quantum critical point with gapless deconfined
excitations.
Let us begin by considering weakly coupled triangles.

The Pi splits the 8 states of a triangle into a ~S ¼ 3=2

quadruplet and two degenerate ~S ¼ 1=2 doublets. The
latter set of four states constitutes the kernel of the Pi

that can be classified according to the spin � and chirality
� degrees of freedom, with an orthonormal basis spanned
by the j�z

i�
z
i i, where

j�i;�1=2ii ¼ j��;1
i i þ e�2�i=3j��;2

i i þ e�4�i=3j��;3
i i:

(3)

The j��;j
i i are states with a valence bond between sites

jþ 1 and jþ 2 and an unpaired spin � on site j of a
triangle:

j��;j
i i ¼ 1ffiffiffi

2
p ðj�i;j "i;jþ1#i;jþ2i � j�i;j #i;jþ1"i;jþ2iÞ; (4)

observing the periodic boundary condition on j. For con-
venience, we use jri and jli for the �z ¼ �1=2 chirality.
In the K� ! þ1 limit, the low energy space is spanned

by the spin-1=2 states given by Eq. (3), and the effective
spin-chirality Hamiltonian reads

H 0 ¼ 5

9

XL
i¼1

�
3

4
þ �̂i � �̂iþ1

�
ð1þ �̂þi �̂�iþ1 þ �̂�i �̂þiþ1Þ; (5)

where �̂i are the spin-1=2 and �̂�i are the chirality
(pseudospin-1=2) raising or lowering operators of the ith
triangle. This is a particular case of the effective model
studied in Refs. [10–14,20,21], where it has been shown
that the spectrum is gapped. Since the energy between two
neighboring triangles is 0 if either the spins or the chiral-
ities form a singlet, the positive semidefinite H 0 has a
twofold degenerate exact ground state of alternating spin
and chirality singlet bonds [22], shown in Fig. 3(a).
Actually, these two states breaking translational invari-

ance are ground states not only of the effective model (5)
but are exact eigenstates of Eq. (1) for any value ofK�, and
are ground states for K� � 0, when expressed as a linear
superpositions of valence bonds [23]. In this wave function
each triangle contains a valence bond—this makes the Pi

projections on the triangles happy. The unpaired spins of
the triangles form valence bonds that connect pairs of
neighboring triangles (they map to the spin-singlet bonds
of the effective model), as shown in Fig. 1 between tri-
angles 2 and 3 and triangles 4 and 5. The plaquettes
between these connected triangles all have a valence
bond, so the corresponding R�’s give 0. However, out of
the three plaquettes belonging to a chirality singlet (e.g.,
triangle 1,2 or 3,4 in Fig. 1), two have a valence bond and
the third one is seemingly not satisfied. The problem can be

resolved if we realize that the three j��;j
i i states used in the

definition of j�; �i in Eq. (3) are not independent, namely,
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FIG. 2 (color online). (a) Energy spectrum from exact diago-
nalization of a tube with 10 triangles and K� ¼ 0 as a function of
momentum along the tube. The empty (filled) symbols denote
spin-singlet (triplet) states classified according to the irreducible
representations (IR) of D3. (b) Low energy two domain wall
excitations in the thermodynamic limit compared to ED spectra
of small clusters with symmetry compatible with the variational
solution. The thick line below the (shaded) continuum is the
bound state.
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j��;1
i i þ j��;2

i i þ j��;3
i i ¼ 0. So the chirality singlet be-

tween the ith and iþ 1th triangles can be expressed as

j��i;1
i ��iþ1;2

iþ1 i � j��i;2
i ��iþ1;1

iþ1 i. In this expression the pla-

quettes between the legs j ¼ 1 and 3 and j ¼ 2 and 3
both have valence bonds explicitly in each term; thus,
they are satisfied. By using the linear dependence, this is

exactly the same as j��i;2
i ��iþ1;3

iþ1 i � j��i;3
i ��iþ1;2

iþ1 i that

makes the third plaquette explicitly satisfied. Thus, we
have shown that, even though there is no valence bond
covering that satisfies all the plaquettes, a linear combina-
tion of ‘‘imperfect’’ coverings still constitutes a ground
state (i.e., for any plaquette we can choose a basis where a
valence bond is explicitly present on that plaquette [24]).

For tubes of odd length with periodic boundary condi-
tions, the system cannot be covered with alternating spin
and chirality singlets, yet ED shows a ground state with
zero energy. A study of finite size wave functions disclosed
that the following two types of domain-wall excitation of
the spin-chirality singlet wave function are relevant: One is

a ~S ¼ 3=2 triangle connected with valence bonds to the

two sides, and the other is a ~S ¼ 1=2 triangle connected
with chirality triplets to the sides, as shown in Fig. 3. We
use the notation j��

i i and j��
i i, respectively, where i de-

notes the position of the domain wall. j��
i i and j��

i i have 0
eigenvalue with all the R’s in the Hamiltonian, except those
that include spins on the ith triangle. Using these states as a
variational basis, we get the following nonvanishing over-
laps in Fourier space: h��

k jH j��
k i ¼ 5ð1� aL coskÞ=6,

h��
k jH j��

k i ¼ 5ð1� aL coskÞ=18, and h��
k jH j��

k i ¼
�5

ffiffiffi
3

p ðcosk� aLÞ=18, while the overlaps are h��
k j��

k i ¼
ð1� aL coskÞ and h��

k j��
k i ¼ 1, where aL ¼ 8=2L van-

ishes for L ! 1. It turns out that for K� ¼ 0 theffiffiffi
3

p j��
k¼0i þ j��

k¼0i is an eigenstate with 0 energy, thus an

exact ground state. The propagation of the domain walls in
an infinite system is given by the

E�
1 ðkÞ ¼ 5

36ð4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10þ 6 cos2k

p Þ (6)

gapless dispersion. This is uncommon for a wave function
consisting of short range valence bonds and is also possibly
observed in Ref. [25]. From the Hellmann-Feynman theo-
rem we get that @EGS=@K� ¼ 3=4; i.e., the energy of the
domain wall becomes negative for K� < 0, lower than the
energy of the dimerized state. This indicates a phase tran-
sition at K� ¼ 0 between the dimerized and a gapless
phase.
Let us now return to tubes with an even number of spins.

In this case, the relevant excitations are pairs of domain
walls that originate from promoting a chirality singlet bond
into a chirality triplet, as shown in Fig. 4. In large systems
the domain walls can propagate independently if they are
far from each other. When the domain walls get close, they
can ‘‘overlap’’ spatially; these components can again be
retrieved from results of ED for small systems. Once all
the relevant states are identified, the overlap matrix and the
matrix of the Hamiltonian between these states can be
calculated analytically for any finite length systems,
allowing us to take the L ! 1 limit [23]. At k ¼ �, a
particular linear combination, featuring deconfined domain

i−2 i−1 i i+1 i+2 i+3

(a)

(b)

(c)

FIG. 3 (color online). (a) Schematic representation of one of
the two ground states of H with alternating spin and chirality
valence bonds (a translation by a lattice vector gives the other
one). The small dots inside the circle represent the individual
spins of a triangle; thick solid lines denote valence bonds. The
arcs connecting two circles stand for a chirality singlet bond
jrli � jlri. In (b) and (c) we show the relevant domain walls in
odd length tubes: (b) j�"

ii, a triangle with ~S ¼ 3=2 (hexagon);

(c) the ellipse containing three spin-1=2 triangles with chiralities
jrrri þ jllli and centered at iþ 1 denotes j�"

iþ1i. Both j�"i and
j�"i have spin-1=2 degrees of freedom.

i+1
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FIG. 4 (color online). Relevant two domain wall configura-
tions in the spin singlet sector for L even. In (a) the small ellipse
denotes a chirality triplet (jrli þ jlri) that breaks up into two
domain walls. (c), (e), and (f) are generally given as j�"

i�
#
j �

�#
i�

"
ji, j�"

i�
#
j � �#

i�
"
ji, and j�"

i�
#
j � �#

i�
"
ji, respectively, where the

domain walls can be arbitrarily separated. (b) and (d) show
overlapping domain walls—(b) is actually j�"

i�
#
iþ1 � �#

i�
"
iþ1i,

and in (d) the chirality configuration is jllrri � jrrlli. Arrows
connect states between which the Hamiltonian H K�¼0 has a

nonzero matrix element, the position of the arrows corresponds
to the position of R relevant in the overlap.
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walls, has 0 energy independent of the system size and is
therefore the third exact ground state. The low energy part
of the two domain wall spectrum is shown in Fig. 2(b): The
two independently propagating walls form a continuum,
while the interaction between the walls leads to a bound
state. The bound state is present for any value of k, whereas
the energy gap between the bound state and the continuum
is / k4 near k ¼ 0 and �, indicating a fine-tuned interac-
tion between the domain walls. We note that a finite size
gap is closing as 1=L2 at k ¼ 0 in accordance with the
Lieb-Schultz-Mattis theorem and that the domain walls in
the triplet spin sector are also gapless. The two domain
wall spectrum differs from similar spectra in the
Majumdar-Ghosh and Affleck-Kennedy-Lieb-Tasaki
models: In the first one a bound state emerges from a
gapped two-spinon continuum at finite momenta [26],
while in the latter the gapped bound state is well separated
from the continuum [27], even if the interactions are long
ranged [28]

Next, let us explore what happens for the K� < 0, below
the point where the gap closes. Using ED, we find a
succession of level crossings where the ground state alter-
nates between the A1 and A2 symmetry as we decrease K�

from 0. If we recall that the symmetry of a chirality valence
bond is A2, the alternation is related to introducing a pair of
domain walls at each level crossing. This phase is gapless
and incommensurate; however, its precise characterization
we leave for future work. At K� � �0:23 the alternation
terminates before all the L possible domain walls are
added, and the incommensurate phase ends with a first-
order phase transition.

ForK� & �0:23 the model is in the universality class of
the spin-3=2 Heisenberg model. In the K� ! �1 limit,
where the spins on the triangles are ferromagnetically

coupled, the effective Hamiltonian is the ~S ¼ 3=2
Heisenberg model with bilinear and biquadratic exchanges
that are 7=12 and 1=18 in units of Kh, respectively. EDs on
short chains indicate that the low energy spectrum is
adiabatically connected to the one of the spin-3=2
Heisenberg models and is therefore gapless. In the absence
of the four-spin ring exchange interaction, density matrix
renormalization group calculations found a first-order
phase transition between the gapped dimerized and the

gapless ~S ¼ 3=2 phase [20,29], with no signature of the
incommensurate phase.

In conclusion, we have demonstrated that even though
the nearest-neighbor valence bond coverings cannot satisfy
all the projection operators in the Hamiltonian, a linear
superposition of such coverings is a good ground state.
Furthermore, we have constructed an exact ground state at
a quantum phase transition point that involves short range
valence bonds and deconfined domain walls with a gapless
excitation spectrum. Identifying the relevant excitations
and combining with exact diagonalization studies,
we have conjectured the phase diagram of the model

(Fig. 5), with three phases as a function of the interaction
strength in the triangles: a gapped dimerized, a gapless
incommensurate, and the gapless Luttinger liquid phase of
the spin-3=2 Heisenberg chain.
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