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Random tilings or packings in the plane are characterized by a size distribution of individual elements

(domains) and by the statistics of neighbor relations between the domains. Most systems occurring in

nature or technology have a unimodal distribution of both areas and number of neighbors. Empirically,

strong correlations between these distributions have been observed and formulated as universal laws.

Using only the local, correlation-free granocentric model approach with no free parameters, we construct

accurate analytical descriptions for disk crystallization, size-topology correlations, and Lemaı̂tre’s law.
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Materials with a cellular structure of domains on meso-
scopic scales constitute a large variety of industrially im-
portant materials (e.g., emulsions, foams, polycrystalline
metals, ferromagnets) as well as the vast majority of living
tissues in multicellular organisms [1,2]. A description of
the geometric and topological properties of the domains is
crucial for the understanding of the material. Most cellular
materials exhibit a degree of disorder, so that sizes, shapes,
orientations, or neighbor relations of domains are deter-
mined through statistical distribution functions.

Of particular interest has been the correlation between
the number of neighbors n of a domain, a discrete topo-
logical property, and its area (in 2D) or volume (in 3D), a
continuous geometric property. The correlation is intui-
tive—larger domains have more neighbors—but for 2D
systems empirical laws have been formulated with a claim
to some degree of universality. Lewis’s law [3,4] postulates
a linear dependence of the average area �An of n-sided cells
on n for certain systems, while for others nonlinear analogs
have been observed [5–7]. For many 2D systems with
unimodal area distributions, a universal correlation is ob-
served between the coefficient of variation of the area cA
and that of the neighbor distribution cn, cf. [5] and Fig. 1.
Fundamental questions have remained unanswered about
such laws, in particular, (i) whether there is a way to
understand them analytically, (ii) whether they are valid
for any tiling of the plane, or dependent on physical
characteristics of the system, and (iii) whether they can
be understood locally by considering a single domain
neighborhood (in the spirit of a mean-field model), or
whether spatial correlations are important. We show here
that all of these relations follow from a simple, purely local
model, that analytical results can be obtained, and that
empirical data can be classified according to whether these
laws are obeyed.

Very recently, a local model for 3D systems has been
developed incorporating a simple connection between size

and neighbor topology. The granocentric model (GM) [8,9]
of Brujić and co-workers analyzes the solid angles taken up
by spheres neighboring a central sphere and, given the size
distribution of spheres, numerically predicts probabilities
of numbers of neighbors n and touching neighbors z. To
self-consistently reproduce the observed n, the model must
modify the total available solid angle around a sphere (4�)
to 4�� �3, where empirically �3 � 0:32� [9]. We extend
the GM to the 2D case and show that, under certain general
approximations, its formalism becomes analytically solv-
able without free parameters.
We consider 2D polydisperse hard disks with area

probability distribution PðAÞ, normalized to the mean

FIG. 1 (color online). Dependence of topological disorder cn
on size disorder cA in random cellular networks. The analytical
theory (solid line) and GM simulations (open diamonds) are in
excellent agreement with each other and empirical data (closed
symbols, experiments; open symbols, simulations). The inset
shows that RVP and hard-core (hc) RVP tilings do not obey
this correlation (triangles), but when undergoing energy mini-
mization in SURFACE EVOLVER (arrows) they approach the GM
prediction (stars). The dotted line is the power-law fit of [5].
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�A ¼ 1. As any packing can be converted to a polygonal
tiling by constructing cells around the disks (Fig. 2), this
also describes a tiling with a distribution PpðAÞ. Focusing
on such tilings, we will not model touching neighbors, but
only the probability Pn of having n general neighbors. A
central disk of area Ac is surrounded by n disks of area A
(Fig. 2), where every disk subtends an angle

� ¼ gðAÞ ¼ 2 arcsin½1=ð1þ
ffiffiffiffiffiffiffiffiffiffiffi
Ac=A

q
Þ� (1)

around the central disk, resulting in the probability distri-
bution of angles fcð�Þ ¼ P½Að�Þ�ðdg�1=d�Þ. Following
[9], we can now compute the conditional probability
PðnjAcÞ and the neighbor probability Pn through

PðnjAcÞ ¼
Z �max

0
Rc;nð�ÞFð�max ��Þd�;

Pn ¼
Z

PðnjAcÞPðAcÞdAc:
(2)

Here, Rc;nð�Þ is the probability of the sum of n angles from

(1) reaching � and Fð�max ��Þ � R1
�max�� fcð�Þd� ex-

presses the probability of the ðnþ 1Þth angle exceeding
�max. The maximum angle �max available for neighboring
disks is again� 2� because of steric effects. But as Euler’s
theorem [10] demands �n ¼ 6 in 2D (for generic threefold
coordinated edges between neighbors), �max ¼ 2�þ �
can be determined analytically: To leading order in
cA � 1, after fitting 5 (touching) neighbors around a
disk, there will be a 50% chance of being able to fit a sixth
neighbor; i.e., for the unmodified �max ¼ 2� we obtain
�n ¼ 5:5. To fit, on average, 0.5 additional neighbors, we
need to supply the additional average angle subtended by
1=2 disk, i.e., � ¼ �=6 and �max ¼ 13�=6. Higher-order
terms in cA can be obtained, but we will show that this
argument is sufficient in the entire range of relevant cA.

Equation (2) can be evaluated numerically for realistic
size and angle distributions. In cellular materials, these are

usually � or shifted-� distributions [7,11,12]; Weibull [13]
and other unimodal distributions have also been used. We
employ a � distribution fit to fcð�Þ to evaluate (2) numeri-
cally; the results are indicated by the label ‘‘GM simula-
tions’’ in subsequent plots. We stress that we have also
tried Weibull and other fits with the same mean and vari-
ance, and obtained almost indistinguishable results [14].
Beyond numerical evaluation, however, we can derive

analytical results by instead choosing a normal distribution
as fit to fc, again preserving the first and second moments.
The quality of this approximation can be assessed rigor-
ously through an Edgeworth expansion [15] and confirmed
numerically. As detailed in the Supplemental Material
[14], the approximation is found to give very accurate
results independent of the exact distribution function. We
stress that our analytics derive from the single parameter cA
only, with cA & 0:5 for the vast majority of systems en-
countered experimentally or theoretically and cA & 0:85
for all instances we could find; thus, expansions in cA as a
small parameter are possible. Expanding PðAÞ around
�A ¼ 1, the coefficient of variation of fcð�Þ is obtained to
Oðc2AÞ from (1) as

c� ¼ cA=f½g�1�0½gð1Þ�gð1Þg: (3)

With Gaussian fc, Rc;n is Gaussian as well, with

n-fold mean and variance, while F is an error
function. Then, PðnjAcÞ in (2) is obtained usingR1
�1 exp½�ðAx þ BÞ2� erfðCx þ DÞdx ¼ ð ffiffiffiffi

�
p

=AÞ erf�
½ðAD � BCÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ C2
p � [16], yielding PðnjAcÞ ¼

�nþ1ðcA; AcÞ ��nðcA; AcÞ, where

�nðcA; AcÞ ¼ 1

2
erf

�
n ��ðAcÞ ��maxffiffiffiffiffiffi
2n

p
��ðcA; AcÞ

�
; (4)

with ��ðAcÞ ¼ 2 arcsin½1=ð1þ ffiffiffiffiffiffi
Ac

p Þ� and, to leading
order in cA, the variance �2

� ¼ c2As=½ð1þ sÞ2ð2þ sÞ�,
with s � ffiffiffiffiffiffi

Ac

p
.

Linearizing the argument of this error function around
its root in Ac, and again making use of a consistent
Gaussian approximation with width cA for PðAcÞ, we ob-
tain a second integral of the same type, yielding, after
further expansion for small cA, the explicit prediction for
neighbor probability Pn ¼ �nþ1ðcAÞ ��nðcAÞ, with

�nðcAÞ ¼ 1

2
erf

� ffiffiffiffiffiffi
2n

p ½1� ð2� c2A=8Þ��
cA½ð1� �Þ2 þ nð1� c2A=8Þ�2�1=2

�
; (5)

where � � sinð13�=12nÞ ¼ sinð�max=2nÞ [14].
We first interpret these results for disks (without con-

structing polygonal domains). Plotting the predicted
PnðcAÞ, we observe a pronounced plateau of hexagonal
order in the near-monodisperse case of small cA (Fig. 3),
so that P6 � 1 for cA � cA;crit. This effect of crystalliza-
tion is well known in simulations of hard-disk packings
[17–19], where a certain amount of polydispersity [20,21]
or bidispersity [22] is necessary to achieve a random

FIG. 2 (color online). Local disk packing in the modified 2D
granocentric model: a disk of area Ac is surrounded by disks of
area A subtending angles �. The disks serve as templates for
polygonal cell construction.
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structure. The critical cA (terminal polydispersity), below
which crystallization into ordered domains occurs, has
been empirically determined to be cA;crit & 0:1
[17,20,21]. In the limit cA ! 0, (5) can be further ex-
panded around n ¼ 13=2, which yields, to excellent accu-
racy, a compact formula for the fraction of hexagonally
coordinated disks,

P6 ¼ erfð�=cAÞ; (6)

where �2 � 2�2=585. Figure 3 shows that the approxima-
tions (5) and (6) capture both the numerical results (GM)
and the empirically observed feature of crystallization
[Eq. (6) is indistinguishable from (5) with n ¼ 6]. The
point of largest curvature of P6ðcAÞ, where the crystalliza-
tion plateau begins, is the critical polydispersity cA;crit ¼
�=

ffiffiffi
3

p � 0:106, in very good agreement with empirical
values of terminal polydispersity.

The crystallization threshold divides the regime of
nearly monodisperse objects (where additional orienta-
tional disorder, absent from the model, could maintain
randomness, e.g., in monodisperse cellular tilings) from
that of polydisperse objects (where size disorder over-
whelms positional disorder [9]). In the latter regime, po-
lygonal cells constructed around the disks should be
characterized by the same relations as the disks them-
selves. As an example, the predicted Pn match experimen-
tal data [23,24] for neighbor probabilities in cellular tissues
very well, see inset of Fig. 3 [note that topological asym-
metry such as P5 � P7 is obtained without skewness
information from PðAÞ]. In the following, we compare
the results of the GM and analytical calculations to

empirical size-topology correlation data from cellular sys-
tems. In order to translate the disk areas into polygonal
areas, we simply assume that a disk of area A with n
neighbors is inscribed into a regular n-gon [with area Ap ¼
ðn=�Þ tanð�=nÞA], and renormalize the resulting areas. All
area-related quantities in Figs. 1 and 4 thus refer to po-
lygonal areas. While the assumption of regular polygons
misses some of the disorder in the system, for cellular
systems with domain energy the difference of domain areas
from those of regular polygons is typically very small (cf.,
e.g., [25]).
The expansion that yields (6) also gives the variance

�2;n of Pn, and thus cn ¼ �1=2
2;n = �n. We find

�2;n ¼
X1

k¼1

ð2k� 1Þ erfc
�
ð2k� 1Þ �

2cA

�
; (7)

which converges rapidly (even for cA ! 1, truncating the
series after the third term is very accurate). Figure 1 shows
the resulting analytical cnðcAÞ, together with numerical
results and various empirical data points. Also shown is
the power-law fit of [5]. We see that, for cA > cA;crit, the
agreement is excellent for a large variety of systems.
However, simulations of random Voronoi polygon (RVP)
tilings [26,27] significantly disagree with the GM theory
and lie on a separate line in cn � cA space (inset of Fig. 1).
We suggest that this is caused by the RVP domains’ lack

of a compact shape, which in turn is due to the absence of
an interfacial energy functional. Almost all physical cel-
lular systems, by contrast, exhibit an energy penalty for
domain boundaries. We tested this hypothesis by digitizing
some of the RVP structures from [27], using them as initial
conditions for an energy minimization of the structure
(under constant domain areas) using SURFACE EVOLVER

(SE) [28] with a uniform interfacial energy density. As

FIG. 3 (color online). Neighbor probabilities P4 (triangles up),
P5 (circles), P6 (diamonds), P7 (squares), P8 (triangles down) of
disks in the GM simulations. Solid lines are analytical approx-
imations. The plateau of P6 � 1 quantifies the range of crystal-
lization near monodispersity with cA;crit ¼ �=

ffiffiffi
3

p
(dashed

vertical line). The inset illustrates that the disks Pn are good
predictors for numbers of cellular neighbors in random tilings,
here for Drosophila wing tissue cells [23,34].

FIG. 4 (color online). The dependence of �An on n is nonlinear
in disk and most cellular systems. The analytical prediction for
this nonlinear Lewis’s law agrees well with simulations and
experimental data up to n � 10. Random Voronoi polyhedra
with [27] or without hard cores [26] do not follow this prediction
(inset). Lewis’s data on cucumber tissue [4] also appears to be in
this class.
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the inset of Fig. 1 shows, the topological disorder cn indeed
diminishes during this process (due to T1 transitions [29])
until the systems approach the observed general cn � cA
correlation.

The Lewis law correlation can be derived within the GM
by computing �An ¼

R
AcPðnjAcÞPðAcÞdAc=Pn, using the

same algorithm as above, including expansions in small cA
and around n ¼ 13=2 [14]. Interestingly, the cA depen-
dences cancel to leading order, giving the cA-independent
approximation

�An ¼ exp

�
2nð1��Þ�

ð1��Þ2 þ n�2

�
: (8)

This is in agreement with our numerical results that show
�An to be insensitive to cA, as well as experimental and other
empirical data [4,5] that confirm this distinctly nonlinear
form of Lewis’s law (8); see Fig. 4. The systems for which
the cn � cA correlation fails (Fig. 1) display a linear
Lewis’s law, clearly disagreeing with the GM theory (inset
of Fig. 4) and again suggesting two distinct classes of
systems distinguishable by compactness of the individual
domains. SURFACE EVOLVER relaxation of the RVP struc-
tures cannot restore the nonlinear Lewis’s law, because
larger areas are not part of the area distribution, which is
not changed by SE.

A relation between P6 and �2;n has been reported as

Lemaı̂tre’s law [7,30], with an empirical two-part fit sug-
gested by [31,32]. The present formalism again provides
concise formulas: from (6), we obtain the leading-order
inversion �=cA � ffiffiffiffi

�
p

P6, which combined with (7) yields

�2;nðP6Þ ¼
X1

k¼1

ð2k� 1Þ erfc
�
ð2k� 1Þ

ffiffiffiffi
�

p
2

P6

�
: (9)

As P6 ! 1, this immediately reduces to �2;n ¼ 1� P6, in

agreement with [31,32]. As Fig. 5 shows, (9) is a uniformly
valid approximation that captures both empirical fits in the

reported range of P6 * 0:3 [31,32]. Even though (9) re-
lates two topological quantities, it could only be derived
through the area distribution. Lemaı̂tre’s law holds very
robustly for all experimental, simulation, and analytical
data. In this sense, all of the analytical information about
topological disorder in these systems is contained in P6.
We have shown that a purely local formalism, a general-

ization of the granocentric model in two dimensions, yields
accurate and general predictions for size-topology correla-
tions in cellular matter, using only the coefficient of varia-
tion of the unimodal area distribution. Further
generalizations are feasible in future work, including
neighbor correlations (Aboav-Weaire law) or higher mo-
ments of the distributions (e.g., to obtain Ck measures
[33]). As a leading-order theory, the present formalism
does surprisingly well and puts a number of empirical
relations on a firm footing. It also agrees very well with
recent results from foams statistically equilibrated through
T1 transitions [35].
The authors thank J. Brujić and E. Vanden-Eijnden for a
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