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The Thomas-Reiche-Kuhn sum rule is a fundamental consequence of the position-momentum com-

mutation relation for an atomic electron and it provides an important constraint on the transition matrix

elements for an atom. Analogously, the commutation relations for the electromagnetic field operators in a

magnetodielectric medium constrain the properties of the dispersion relations for the medium through four

sum rules for the allowed phase and group velocities for polaritons propagating through the medium.

These rules apply to all bulk media including the metamaterials designed to provide negative refractive

indices. An immediate consequence of this is that it is not possible to construct a medium in which all the

polariton modes for a given wavelength lie in the negative-index region.
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Sum rules and their continuum, integral analogues pro-
vide a simple and reliable method with which to check the
validity of model calculations and to ensure that important
physical principles are respected. The famous Kramers-
Kronig relations [1], for example, enforce causality and
provide a relationship between the real and imaginary parts
of linear response functions. The fluctuation-dissipation
theorem, for another, tells us the lowest amount of noise
required to accompany losses so that quantum mechanical
commutation relations are conserved [2]. Radiative pro-
cesses in atoms and molecules are also constrained by sum
rules. The extent to which spontaneous emission rates can
be modified by environmental influences is constrained so
that suppression of decay at some frequencies is always
balanced by enhanced decay at other frequencies [3].

The Thomas-Reiche-Kuhn sum rule [4,5] and its rela-
tives [6–9] play an especially important role in the inter-
action between light and matter. In its simplest form it
states that the sum of the squares of the dipole matrix
moments from any energy level, weighted by the corre-
sponding energy differences, is a constant. The sum rule is
a fundamental consequence, for an atomic electron, of the
canonical commutation relation between the position and
momentum. Indeed, we can also view it as a condition that
is necessary in order for this commutation relation to hold.
Among the many consequences of this sum rule we note
that it constrains the cross sections for absorption and
stimulated emission [5].

The quantum nature of the electromagnetic field mani-
fests itself in the commutation relations for the field opera-
tors. In particular, in a dielectric medium, the E, D, andH
fields satisfy the equal-time commutation relations [10,11]

½�0Hjðr; tÞ; "0Ekðr0; tÞ� ¼ i@"jklrl�ðr� r0Þ;
½�0Hjðr; tÞ; Dkðr0; tÞ� ¼ i@"jklrl�ðr� r0Þ;

(1)

where "jkl is the permuting symbol andwe have adopted the

familiar summation convention [12]. The excitations of the
field in the medium, the polaritons, are coupled modes of
the electromagnetic field and the polarization of the me-
dium [13–15]. For simplicity, we specialize to homogenous
and isotropic media so that the polariton properties are the
same for all propagation directions. A generalization to
anisotropic media would introduce direction-dependent
phase and group velocities. The dispersion relation pro-
vides, in general, multiple frequencies !j for each wave

number k, one for each polariton mode. A magnetic me-
dium is described in terms of a magnetic induction B in
addition to the magnetic fieldH. This adds to the relations
(1) the further and distinct commutation relations

½Bjðr; tÞ; "0Ekðr0; tÞ� ¼ i@"jklrl�ðr� r0Þ;
½Bjðr; tÞ; Dkðr0; tÞ� ¼ i@"jklrl�ðr� r0Þ:

(2)

The magnetic effects add, to the polaritons, further coupled
modes for the electromagnetic field and the material me-
dium. For simplicity, we follow precedent and refer to all of
these modes collectively as polaritons [15].
Milonni and Maclay have provided explicit expressions

for the four electric and magnetic field operators in a
lossless magnetodielectric medium [16,17]:

Eðr; tÞ ¼ i
X
k;�;j

!jAk;�;je
�ið!jt�k�rÞek;� þ H:c:;

Dðr; tÞ ¼ i
X
k;�;j

"0"ð!jÞ!jAk;�;je
�ið!jt�k�rÞek;� þ H:c:;

Hðr; tÞ ¼ i
X
k;�;j

Ak;�;j

�0�ð!jÞ e
�ið!jt�k�rÞk� ek;� þ H:c:;

Bðr; tÞ ¼ i
X
k;�;j

Ak;�;je
�ið!jt�k�rÞk� ek;� þ H:c:;

(3)
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where the summation runs over all the allowed wave
vectors (k), polarizations (�), and polariton branches (j).
Here we have introduced the operators

Ak;�;j ¼
�
@�0�

2V

1

k

d!j

dk

�
1=2

ak;�;j; (4)

where V is the quantization volume and the frequencies for
each of the polaritons are the solutions of the dispersion
relation

!2"ð!Þ�ð!Þ � k2c2 ¼ 0; (5)

one for each polariton branch. If we insert these expres-
sions into our four fundamental commutation relations (1)
and (2) and take the limit of infinite volume in the standard
manner [18] then, in analogy with the atomic Thomas-
Reiche-Kuhn sum rules, we find the correct commutation
relations only if we impose the four polariton sum rules:

1

c2

X
j

zð!jÞ
!j

k

d!j

dk
¼ 1; (6)

where zð!jÞ represents any of the four functions 1, "ð!jÞ,
�ð!jÞ, and "ð!jÞ�ð!jÞ, and the summation runs over all

the polariton modes. The first and last of these have been
found previously for nonmagnetic media [19–21] and can
be expressed equivalently in terms of the allowed polariton
phase and group velocities:

X
j

!j

k

d!j

dk
¼ X

j

vj
gv

j
p ¼ c2

X
j

k

!j

d!j

dk
¼ X

j

vj
g

vj
p

¼ 1:

(7)

Our task is to prove the four sum rules (6) for magnetodi-
electric media. In doing so, it is advantageous to prove a
generalized result that applies to more realistic media
exhibiting losses caused by absorption. For such media,
the relative permittivity, "ð!Þ and permeability �ð!Þ are
complex, as is the frequency ! associated with each polar-
iton mode. The sum rules (6) then apply to the real parts of
the summands.

To provide a proof of the four sum rules (6) we require
the use of two properties of the relative permittivity and
permeability as functions of the complex frequency!. The
first of these properties is the familiar crossing relation [1],

"ð�!Þ ¼ "�ð!�Þ; �ð�!Þ ¼ ��ð!�Þ; (8)

which enforces the reality of the displacement and the
magnetic induction. The second property, which is inti-
mately connected with causality, is that both "ð!Þ and
�ð!Þ tend to unity as j!j ! 1 and are analytic in the
upper half of the complex! plane. We restrict our analysis
to situations in which they have only simple poles in the
lower half-plane, each of which corresponds to a polariton
mode [22].

Consider an integral of the form

Iz ¼ � 1

�i

Z 1

�1
d!

!zð!Þ
!2"ð!Þ�ð!Þ � k2c2

; (9)

where the function zð!Þ again represents any of the four
possibilities, 1, "ð!Þ, �ð!Þ, or "ð!Þ�ð!Þ. It is natural to
evaluate this integral by closing a semicircular contour
either in the upper or lower half of the complex ! plane.
The two integration contours are presented in Fig. 1.
Naturally, the result must be the same whichever method
is used. We start with the integral in the upper half-plane.
The zeros of the denominator in the integrand all lie in the
lower half of the complex ! plane. This, and the fact that
zð!Þ is also analytic in the upper half-plane, means that the
integrand is analytic in the upper half-plane and hence that
the integral around this contour must be zero. It then
follows that

� 1

�i

Z R

�R
d!

!zð!Þ
!2"ð!Þ�ð!Þ � k2c2

¼ 1

�i

Z �

0
iRei�d�

Rei�zðRei�Þ
R2ei2�"ðRei�Þ�ðRei�Þ � k2c2

) Iz

¼ 1; (10)
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FIG. 1. The two integration contours used in proving our sum
rules, (a) in the upper half-plane and (b) in the lower. Note that
all the poles of the integrand, represented by the crosses, lie in
the lower half of the complex ! plane and exist in pairs, !j and

�!�
j .
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where we have written ! ¼ Rei� on the semicircular path
and used the fact that "ðRei�Þ, �ðRei�Þ ! 1 as R ! 1.

We can also evaluate Iz by closing a semicircular con-
tour in the lower half of the complex plane. Note that doing
so will introduce residues from the zeros of the denomina-
tor, corresponding to the solutions of the dispersion rela-
tion (5). These will appear with weight �2�i with the
minus sign arising because the sense of integration around
the contour is clockwise [12]. We find

� 1

�i

Z R

�R
d!

!zð!Þ
!2"ð!Þ�ð!Þ � k2c2

¼ � 1

�i

Z 2�

�
iRei�d�

Rei�zðRei�Þ
R2ei2�"ðRei�Þ�ðRei�Þ � k2c2

þ 2Rz; (11)

where Rz is the sum of the residues of the integrand at
the poles given by the dispersion relation (5). Note that the
poles of zð!Þ do not contribute to the residues as the
functions "ð!Þ and �ð!Þ are present in the denominator
of the integrand so the integrand is regular at these points.
Taking the limit as R tends to infinity we are left with

Iz ¼ �1þ 2Rz: (12)

It follows, therefore, that Rz ¼ 1.
It only remains to calculate the required residues of

!zð!Þ
!2"ð!Þ�ð!Þ � k2c2

¼ zð!Þ!
2kc

�
1

!nð!Þ � kc

� 1

!nð!Þ þ kc

�
; (13)

where nð!Þ is the (complex) refractive index,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"ð!Þ�ð!Þp

.
We can do this rather neatly by using a simple trick [12]:
the residue of a function 1=fð!Þ at a simple pole !0 is
df=d! evaluated at !0. It follows that

Rz ¼
X
poles

!zð!Þ
2kc

�
1

d!nð!Þ
d!

��������!n¼kc
� 1

d!nð!Þ
d!

��������!n¼�kc

�

¼ 1

2c2
X
poles

zð!Þ!
k

d!

dk
; (14)

where the sum runs over all the poles, at positions corre-
sponding to the solutions of the dispersion relation (5).
Finally, we note that the summation runs over pairs of
complex frequencies !j and �!�

j , with each pair corre-

sponding to a single polariton branch. We can rewrite
Eq. (14) as a sum over these pairs:

Rz¼1¼ 1

2c2
X
j

�
zð!jÞ

!j

k

d!j

dk
þzð�!�

j Þ
�!�

j

k

d�!�
j

dk

�

¼ 1

c2
Re

�X
j

zð!jÞ
!j

k

d!j

dk

�
; (15)

where we have used the crossing relation (8). Our four
possible values of zð!Þ give the four required sum rules,
reducing to Eq. (6) for a lossless medium.
For the limiting case of a lossless medium, the simplest

model of a magnetodielectric medium has a single electric
and a single magnetic resonance, so that the relative per-
mittivity and permeability are [15]

"ð!Þ ¼ !2
Le �!2

!2
Te �!2

; �ð!Þ ¼ !2
Lm �!2

!2
Tm �!2

; (16)

where the L and T subscripts denote the longitudinal and
transverse frequencies associated with the electric and
magnetic dipole resonances e and m, respectively. The
associated dispersion relation, given by Eq. (5), has three
(positive) solutions, !1, !2, and !3 for each value of k,
associated with three distinct polariton branches. The dis-
persion relation for this relative permittivity and perme-
ability is a cubic equation in !2 withX

j

!2
j ¼ !2

Le þ!2
Lm þ k2c2: (17)

Differentiating this equation with respect to k gives, di-
rectly, the first of our four sum rules. The product of
our three roots also follows directly from the dispersion
relation: Y

j

!2
j ¼ k2c2!2

Te!
2
Tm: (18)

Taking the logarithm of this expression and then differ-
entiating with respect to k gives the last of our four sum
rules. Our second and third sum rules are of similar form
and sowe need only calculate one of them in order to verify
the accuracy of them both. The second sum rule, for our
model medium, is

X
j

"ð!jÞ
!j

k

d!j

dk
¼ c2 þX

j

�
!2

Te �!2
Le

!2
Te �!2

j

�
!j

k

d!j

dk

¼ c2 �!2
Te �!2

Le

2k

d

dk
ln
Y
j

ð!2
Te �!2

j Þ

¼ c2; (19)

because the product of roots in the logarithm is indepen-
dent of k.
We note that our sum-rules apply to the newly developed

metamaterials including those designed to realize negative
refractive indices [17,23,24], provided only that the wave-
length is large enough to allow a description in terms of
"ð!Þ and�ð!Þ. For a negative refractive index to occur we
require both "ð!Þ and �ð!Þ to be negative. Our example
from the preceding paragraph, therefore, suffices to dem-
onstrate this behavior. If, in the relative permittivity and
permeability (16), there are frequencies lying between !Le

and !Te and also between !Lm and !Tm then polaritons at
these frequencies will experience a negative refractive

PRL 108, 013601 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

6 JANUARY 2012

013601-3



index. The three polariton branches in such a case are
presented in Fig. 2. We see that there is a polariton in
the negative-index region for all values of k and that d!

dk

is negative for this branch [25]. It follows that the corre-
sponding terms in our first and fourth sum rules will be
negative and must be compensated by correspondingly
larger positive terms for polaritons outside this region.
This tells us, also, that we cannot construct a medium in
which all the polariton modes for a given wavelength
lie in the negative-index region. All of the terms in our
second and third sum rules will be positive, however, as
"ð!Þ and �ð!Þ are negative for the negative-index
polariton.

Our derivation has provided not only the four sum
rules, Eq. (6), for lossless media, but has also indicated
the required modified forms, Eq. (15), when losses are
important. A recent analysis of the quantized electromag-
netic field for a lossy magnetodielectric medium [26]
has provided explicit forms for the electric, magnetic,
displacement, and magnetic induction fields. In a future
publication, we shall show how our sum rules, Eq. (15),
are necessary to arrive at the required field commutation
relations in lossy media. Alternatively, more in the spirit of
the Thomas-Reiche-Kuhn sum rules, we can enforce the
commutation relations for the Kheirandish-Soltani model
and thereby provide an alternative derivation of our sum
rules.
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FIG. 2 (color online). Polariton dispersion curves for a lossless
medium, where the permittivity and permeability are given by
Eq. (16). The relative magnitudes of the four constants have been
chosen so as to give a negative-index frequency range between
!Te and !Lm. Note that in this negative-index region the polar-
iton branch has a negative slope.
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