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The extension of Green’s functions techniques to the complex energy plane provides access to fully

dressed quasiparticle properties from a microscopic perspective. Using self-consistent ladder self-

energies, we find both spectra and lifetimes of such quasiparticles in nuclear matter. With a consistent

choice of the group velocity, the nucleon mean-free path can be computed. Our results indicate that, for

energies above 50 MeV at densities close to saturation, a nucleon has a mean-free path of 4 to 5 fm.
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The mean-free path, �, of a nucleon in the nuclear
medium is a basic transport coefficient, essential ingredient
of several theoretical and experimental considerations.
Cross section calculations within Glauber theory and trans-
port simulations, for instance, rely directly or indirectly on
in-medium mean-free paths in an energy range from above
the Fermi surface to a few hundred MeVs [1–5]. Below the
Fermi energy, large values of the nucleon mean-free path
provide a justification for the shell model [6]. At the Fermi
surface itself, the existence of quasiparticles (qp) is vali-
dated by an infinite value of � [7].

Strong interactions between nucleons and the many-
body correlations they induce play an essential role in
nuclear systems [8]. Their existence precludes the appli-
cation of mean-field or density functional techniques in the
calculation of �. As a matter of fact, the fully Pauli-blocked
nature of these approximations leads to an infinite mean-
free path below the Fermi surface. More sophisticated
theoretical approaches have been used in the past [9–12],
but even then the hole mean-free path is not necessarily
well defined [13,14]. Moreover, calculations have been
generally performed at energies arbitrarily close to the
real axis and, as a consequence, ad hoc nonlocality cor-
rections have to be introduced, generally through the
k-mass approximation [9].

Many-body Green’s functions deal explicitly with time
propagation of particles and holes in interacting fermionic
systems, constituting a natural framework to compute qp
properties [8,15]. Pauli principle and nucleon-nucleon
(N-N) correlations are fully taken into account. As we
shall see in the following, the extension of these techniques
to the complex energy domain provides a more consistent
approach to compute qp quantities, without further approx-
imations [9,15,16]. Direct calculations on the complex
energy plane have been performed in electronic systems
since the early 1960s [17] and have been recently em-
ployed to describe microscopic excitations in solid state

applications [18]. In this Letter, we devise such an exten-
sion for the case of nuclear matter and compute qp spectra
and lifetimes, which eventually lead to an evaluation of the
nucleon mean-free path from a fully microscopic
standpoint.
In the past, the lack of microscopic propagators in

nuclear systems has hampered the calculation of transport
coefficients using Green’s function techniques, unlike
other approaches [19]. The recent implementation of the
ladder approximation within the self-consistent Green’s
functions (SCGF) framework, however, gives access to
the full off-shell energy and momentum dependence of
one-body (1B) propagators. We refer the reader to
Refs. [20,21] for details, but mention here that the method
takes into account short-range and tensor correlations.
Three-body forces (3BF) are included effectively via a
density-dependent two-body force, obtained by averaging
over a third, correlated nucleon [21].
Let us discuss the extension of the Green’s functions

formalism to the complex energy domain, before examin-
ing the calculation of qp properties. The propagation of an
excitation in nuclear matter is described by the retarded
propagator, GRðk; tÞ � �ðtÞhfaðk; tÞ; ayðk; 0Þgi. In a uni-
form system in thermal equilibrium, GR only depends on
the time difference, t, and the momentum modulus, k.
Using the Lehmann representation, one finds the retarded
propagator in energy space:

G Rðk;!Þ ¼
Z d!0

2�

Aðk;!0Þ
!þ �!0 ; (1)

where !þ � !þ i� with � ! 0. All 1B operators can be
built from the spectral function, Aðk;!Þ. The previous
expression suggests an extension of the propagator to the
complex energy plane, replacing !þ by z:

G ðk; zÞ �
Z d!0

2�

Aðk;!0Þ
z�!0 : (2)
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Such an extension exists, is unique, and gives rise to a
complex variable function that is analytic off the real axis
[22]. Close to this axis by above (below), Gðk; zÞ becomes
the retarded (advanced) propagator, Gðk; !�Þ ¼
GR=Aðk;!Þ. An illustration of the complex energy depen-

dence of the 1B propagator is given in the left plot of
Fig. 1. The discontinuity of G across the real axis is
determined by the spectral function, ImfGðk;!�Þ �
Gðk;!þÞg ¼ Aðk;!Þ.

In the complex plane, the 1B propagator fulfills a Dyson
equation

G ðk; zÞ ¼ 1

z� �ðk; zÞ ; (3)

with a self-energy � which is extended to complex ener-
gies in analogy with Eq. (2):

�ðk; zÞ �
Z d!

2�

�ðk;!Þ
z�!

: (4)

Our strategy will consist in computing �ðk; !Þ from full
off-shell ladder self-energies and using Eqs. (4) and (3), to
extend � and G to the complex plane.

Let us now illustrate how the mean-free path can be
extracted from Gðk; zÞ. One computes �ðkÞ, from the nu-
cleon inverse lifetime �ðkÞ and group velocity vðkÞ, via
�ðkÞ ¼ vðkÞ=j�ðkÞj. Such quantities appear in the asymp-
totic form of the retarded 1B propagator [8,15]:

G Rðk; tÞ �t���1 �i�ðkÞe�i"ðkÞte�j�ðkÞjt: (5)

While �ðkÞ represents the strength of the excitation, the qp
spectrum �ðkÞ determines the oscillation frequency of the
propagator. The spectrum is closely related to the group
velocity

vðkÞ ¼ @"ðkÞ
@k

¼ k

m�ðkÞ ; (6)

which is often studied in terms of an effective mass m�ðkÞ.
It is natural to derive Eq. (5) by Fourier transformingGR,

under the assumption that G has a pole of order 1 in the
lower half-plane [15,23]. The single pole description is
particularly attractive due to its simplicity and its relation
to Fermi liquid theory [7]. However, as we have seen, G is
analytic for complex z and, as a matter of fact, does not
have a pole in the complex plane. To find Eq. (5), one
actually trades the discontinuity of G across the real axis
for a pole in the lower half-plane. The pole, however, is not
associated to G, but rather to its analytical continuation

(ac), ~G, which is continuous across the real axis but non-

analytic in the lower half-plane [23]. ~G is computed from
the complex Dyson equation, Eq. (3), with � replaced by

the ac of the self-energy, ~�:

~�ðk; zÞ �
(
�ðk; zÞ; Imz > 0;

��ðk; zÞ; Imz � 0;
(7)

a function that is analytic everywhere in the complex plane.
The right plot in Fig. 1 shows the imaginary part of
~Gðk ¼ 0; zÞ for a CD-Bonn SCGF self-energy. ~G is ana-
lytic across the real axis, but develops an isolated pole in
the lower half-plane. The position of this pole is given by
the complex equation

zðkÞ ¼ k2

2m
þ Re~�ðk; zðkÞÞþ iIm~�ðk; zðkÞÞ: (8)

The solution, zðkÞ ¼ "ðkÞ þ i�ðkÞ, gives access to the fully
dressed qp spectrum and inverse lifetime. As we have
access to the ac of SCGF self-energies in the complex
plane via Eq. (4), we are able to compute fully dressed
spectra and lifetimes for different momenta, densities, and
temperatures. Note that, in general, the solution to the
previous equation need not be unique. In our nuclear matter
calculations in the normal phase, however, we have not
found multiple solutions, but rather a single, well-defined
quasiparticle pole at all momenta.
Previous calculations have relied on solving Eq. (8)

using successive approximations for the complex energy

dependence of ~� [9–11]. At the lowest order, known as first
renormalization [18], one completely neglects the depen-
dence on the imaginary part of z. This provides the usual
definition of a qp:

"1ðkÞ ¼ k2

2m
þ Re~�ðk; "1ðkÞÞ; (9)

�1ðkÞ ¼ Im~�ðk; "1ðkÞÞ; (10)

which usually coincides with the peak of the spectral
function. A second renormalization qp pole is obtained
by expanding the self-energy around z1ðkÞ to first order
in the imaginary part of z,

-200
-150

-100
-50

 0
 50

-60 -40 -20  0  20  40

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

Energy, 
E [M

eV]

Width,  [MeV]

-200
-150

-100
-50

 0
 50

-60 -40 -20  0  20  40

-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

Energy, 
E [M

eV]

Width,  [MeV]

FIG. 1 (color online). Imaginary part of the propagator in the
complex energy plane, z ¼ Eþ i�, at zero momentum for a CD-
Bonn self-energy at � ¼ 0:16 fm�3 and T ¼ 5 MeV. The left
plot corresponds to the usual propagator, Gðk; zÞ, while the right
plot represents its analytic continuation, ~Gðk; zÞ. Solid lines show
the imaginary part of the propagator just above and below the
real axis, �Aðk; !Þ=2.
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"2ðkÞ ¼ "1ðkÞ � Im~�ðk; "1ðkÞÞIm 1

1� ~�0ðz1ðkÞÞ
; (11)

�2ðkÞ ¼ �1ðkÞRe 1

1� ~�0ðz1ðkÞÞ
: (12)

In the context of nuclear physics, it has generally been

assumed that the dependence of ~� on the imaginary part of
z is soft and can be ignored in the previous derivatives [9].
This gives rise to a slightly different qp pole:

"20 ðkÞ ¼ "1ðkÞ; (13)

�20 ðkÞ ¼ �1ðkÞ 1

1� Re~�0ð"1ðkÞÞ
: (14)

As we shall see, this approximation is well justified only
above kF.

In the following, we present our fully dressed results and
compare them to previous approximations at � ¼
0:16 fm�3. The upper panels of Fig. 2 show the SCGF
spectral function, as a function of energy, for three differ-
ent characteristic momenta (k ¼ 0, kF, and 2kF). These
have been obtained from a T ¼ 0 CD-Bonn self-energy
[21]. The lower panels give the absolute value of the
analytically continued propagator. Contour levels unam-

biguously demonstrate the existence of a pole in ~G. The
location of the fully dressed pole is consistent with the
numerical solution of Eq. (8), shown with a cross.
Differences between this pole and the first or second
renormalization properties are visible at k ¼ 0. At and
above the Fermi surface, discrepancies disappear and the
fully dressed pole coincides with first and second renorm-
alizations. This points towards a very soft dependence of�
on the imaginary part of z for k � kF. Note that, at the

Fermi surface, calculations yield a zero width, providing a
verification of Fermi liquid theory from a self-consistent
perspective [8].
Nuclear many-body calculations are subject to uncer-

tainties associated to the underlying N-N interaction as
well as to the approximation scheme itself. To assess them,
we summarize in Fig. 3 the results obtained with two
different phase-shift equivalent potentials, the CD-Bonn
[24] and the Argonne v18 (Av18) [25] interactions, at � ¼
0:16 fm�3 and a finite, but rather small, temperature of
T ¼ 5 MeV. The upper panels show the three approxima-
tions to qp spectra discussed earlier as a function of mo-
mentum. While above the Fermi surface the agreement
between all approximations is good, below kF the fully
dressed pole (solid line) is always more attractive than "1
(dashed line). In contrast, the second renormalization spec-
trum (dash-dotted line) is more repulsive. This indicates
that successive renormalizations might not yield results
closer to the fully dressed pole. The inverse qp lifetime,
shown in the central panels, is bell shaped. Remarkably,
below the Fermi surface the lifetime is finite. Close to kF,
its absolute value becomes small, but not zero due to
thermal correlations [7]. Although not shown here, we
have found that the effect of 3BF at this density is small
in all the quantities shown [21]. In contrast, many-body
approximations other than GF’s would yield rather
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FIG. 2 (color online). Upper panels: spectral function at � ¼
0:16 fm�3 and T ¼ 0 MeV for the CD-Bonn interaction. Lower
panels: absolute value of ~G in the same conditions. The fully
dressed pole is indicated by a cross, while the circle (square)
show the position of the first (second) renormalization
quasiparticle.
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FIG. 3 (color online). Quasiparticle properties at � ¼
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different results. Within the Brueckner-Hartree-Fock
approximation, states below the Fermi surface are com-
pletely blocked and � ¼ 0 for k < kF [13,14].

To finish the calculation of the nucleon mean-free path, a
consistent determination of ", �, and v, via Eq. (6), is
needed. Let us, for instance, consider the nuclear physics
renormalization, Eqs. (13) and (14). The prefactor on the
inverse lifetime is the inverse of the ! mass. The group

velocity involves the full effective mass,
m�

1

m ¼ m!

m
mk

m . As a

consequence, the mean-free path is only renormalized by
the k mass, �20 ðkÞ ¼ m

mk
�0, with respect to the uncorrected

mean-free path, �0ðkÞ ¼ k=½2mIm�ðk; "1ðkÞþÞ	. Thus,
consistency in the spectrum and the lifetime are needed
to obtain a nonlocality correction [9–11]. Similarly, the
calculation of the self-consistent mean-free path relies on
an effective mass computed from the fully dressed spec-
trum rather than on m�

1.
The lower panels of Fig. 3 show the effective masses

associated to the different approximations. Corresponding
to a more attractive spectrum, the effective mass associated
to the fully dressed pole (solid line) is lower than that of the
usual qp approximation (dashed line). The latter is the
product of the !- (double-dot dashed) and the k masses
(dotted). Our results confirm the well-known behaviors for
these quantities:m! peaks around kF, whilemk dips in this
region. Note, however, that for the softer interaction (CD-
Bonn), m!

m becomes 1 at lower momenta than for the harder

force (Av18). For hole states, the effective mass associated
with "2 shows a substantial increase as k ! 0, associated
with the flattening of the spectrum in that region.

A summary of final results is presented in Fig. 4. The
upper panel shows the mean-free path obtained with a fully
realistic self-energy based on the CD-Bonn interaction
supplemented with and Urbana-type 3BF [21]. As ex-
pected, we find that the largest differences between ap-
proximations occur for hole energies, below �20 MeV, in
a region where it is already relatively small. In contrast,
above 50 MeV, all approximations give similar results,
except for �0 (dashed line), which is not corrected for
nonlocality and thus should not be taken as a realistic
prediction. �20 (dash-dotted line) is only somewhat larger
than �0 because of the small mk associated with the SCGF
results. The kinetic theory prediction, �� ð��npÞ�1 (dot-

ted lines), is well below all quantum in-medium mean-free
paths. The latter flatten at high energies, and remain con-
stant, at a value of around 4–5 fm.

The lower panel of Fig. 4 focuses on theN-N interaction
and temperature dependence of our results. The T ¼ 0
mean-free path with 3BF (solid line) is slightly larger
than that obtained without 3BFs (dashed). The effect of
temperature is relevant in an area of about 20 MeVaround
the Fermi surface, where the mean-free path is finite,
although still large. The fully correlated results agree
with experimental estimates [1,26] and suggest that ��
4–5 fm above 50 MeV. The spread between different lines

is an estimate of theoretical uncertainties, which amount to
less than 1 fm at those energies.
To summarize, we have devised a new method to obtain

the mean-free path of a nucleon in the medium. The
method involves the extension of Green’s functions tech-
niques into the complex plane. The pole of the propagator
gives access to fully dressed qp properties. The renormal-
ization induced by this procedure is relevant for hole
properties. Our approach provides a validation for previ-
ously used approximations by taking into account the full
dependence on the imaginary part of the energy. With all
many-body corrections properly implemented, we obtain a
mean-free path of around 4–5 fm at saturation density and
energies above 50 MeV. Future work will systematically
assess the density, temperature, and isospin asymmetry
dependence of the mean-free path.
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