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We reconsider the matrix model formulation of type IIB superstring theory in (9þ 1)-dimensional

space-time. Unlike the previous works in which the Wick rotation was used to make the model

well defined, we regularize the Lorentzian model by introducing infrared cutoffs in both the spatial

and temporal directions. Monte Carlo studies reveal that the two cutoffs can be removed in the large-N

limit and that the theory thus obtained has no parameters other than one scale parameter. Moreover, we

find that three out of nine spatial directions start to expand at some ‘‘critical time,’’ after which the space

has SO(3) symmetry instead of SO(9).
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Introduction.—One of the most fundamental questions
concerning our Universe is why we live in a (3þ 1)-
dimensional space-time, and why the Universe is expand-
ing. The aim of this Letter is to provide some evidence that
these facts can be derived from a nonperturbative formu-
lation of superstring theory in (9þ 1) dimensions based on
matrix models. Motivated by recent developments in
understanding the dynamics of the Euclideanized model,
we study the SO(9,1) symmetric Lorentzian model non-
perturbatively without Wick rotation. Our Monte Carlo
results demonstrate, among other things, that three out of
nine spatial directions start to expand in the early Universe.
We expect that what we are doing here is essentially a first-
principle calculation of the unified theory including quan-
tum gravity. This may be contrasted with the quantum
cosmology in the early 1980s that aimed at describing
the birth of the Universe [1] within the minisuperspace
approximation. More recently, a nonperturbative approach
to quantum gravity has been pursued using the causal
dynamical triangulation [2]. For earlier works that put
forward the idea to use matrices for cosmology, see
Refs. [3,4].

Matrix model for superstrings.—Superstring theory not
only provides a most natural candidate for a consistent
theory of quantum gravity but also enables a unified de-
scription of all the interactions and the matters. A crucial
problem is that we do not yet have a well-established
nonperturbative formulation, which would be needed in
addressing dynamical issues such as the determination of
space-time dimensionality [5].

In the 1990s, there was remarkable progress in under-
standing the nonperturbative aspects of superstring theory
based on D-branes. Most importantly, it was noticed that
large-N matrices are the appropriate microscopic degrees

of freedom which are useful in formulating superstring
theory in a nonperturbative manner [6–8]. In particular,
the type IIB matrix model was proposed as a nonperturba-
tive formulation of type IIB superstring theory in ten-
dimensional space-time [7]. It was also realized that the
five types of superstring theory in ten dimensions are just
different descriptions of the same theory. Therefore, it was
speculated that the type IIB matrix model actually de-
scribes the unique underlying theory, although it takes
the form that has explicit connection to perturbative type
IIB superstring theory.
In the type IIB matrix model, the space-time is repre-

sented dynamically by the eigenvalue distribution of ten
bosonicN � N traceless Hermitian matrices [9]. So far, the
dynamical generation of four-dimensional space-time has
been discussed exclusively in the Euclideanized model.
Indeed the spontaneous symmetry breaking (SSB) of SO
(10) down to SO(4) was suggested by the Gaussian expan-
sion method [10,11]. Recently, systematic calculation of
the free energy has been performed for SOðdÞ symmetric
vacua with 2 � d � 7, and it is found that d ¼ 3 gives the
minimum [12]. Furthermore, the ratio of the space-time
extent in the extended directions to that in the shrunken
directions is shown to be finite. These results, if true,
suggest the necessity for reconsidering the formulation in
order to make any connection to the real world.
Matrix model with SO(9,1) symmetry.—Our starting

point is the action S ¼ Sb þ Sf, where [7]

Sb ¼ � 1

4g2
trð½A�; A��½A�; A��Þ;

Sf ¼ � 1

2g2
trð��ðC��Þ��½A�;���Þ;

(1)
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with A� (� ¼ 0; . . . ; 9) and �� (� ¼ 1; . . . ; 16) being

N � N traceless Hermitian matrices. The Lorentz indices
� and � are contracted using the metric � ¼
diagð�1; 1; . . . ; 1Þ. The 16� 16 matrices �� are ten-
dimensional gamma matrices after the Weyl projection,
and the unitary matrix C is the charge conjugation matrix.
The action has manifest SO(9,1) symmetry, where A� and

�� transform as a vector and a Majorana-Weyl spinor,
respectively. The Euclidean model, which has SO(10)
symmetry, can be obtained from this action by the Wick
rotation A0 ¼ iA10. A crucial difference is that the bosonic
part of the action in the Euclidean model is positive defi-
nite, whereas in the Lorentzian model it is

tr ðF��F
��Þ ¼ �2trðF0iÞ2 þ trðFijÞ2; (2)

where F�� ¼ �i½A�; A�� are Hermitian matrices, and

hence the two terms in (2) have opposite signs [13].
We study, for the first time, the Lorentzian model non-

perturbatively based on the partition function

Z ¼
Z

dAd�eiS ¼
Z

dAeiSbPfMðAÞ; (3)

where the Pfaffian PfMðAÞ appears from integrating out
the fermionic matrices ��. Note that in the Euclidean
model, the Pfaffian is complex in general, and its phase
plays a crucial role in the aforementioned SSB of SO(10)
symmetry [14,15]. On the other hand, the Pfaffian in the
Lorentzian model is real. Therefore, the mechanism of
SSB that was identified in the Euclidean model is absent
in the Lorentzian model.

In the definition (3), we have replaced the ‘‘Boltzmann
weight’’ e�S used in the Euclidean model by eiS. This is
theoretically motivated from the connection to the world
sheet theory [7]. The partition function (3) can also be
obtained formally from pure N ¼ 1 supersymmetric
Yang-Mills theory in (9þ 1) dimensions by dimensional
reduction. Note, however, that the expression (3) is
ill defined and requires appropriate regularization in order
to make any sense out of it. This is in striking contrast to
the Euclidean model, in which the partition function is
shown to be finite without any regularization [16,17].

It turns out that the integration over A0 is divergent, even
if we fix 1

N trðAiÞ2 to a constant. In order to cure this

divergence, we introduce a constraint

1

N
trðA0Þ2 � �

1

N
trðAiÞ2; (4)

which is invariant under the scale transformation A� !
�A�. Note that this constraint generically breaks SO(9,1)

symmetry down to SO(9). However, it turns out to be
equivalent to imposing (4) after ‘‘gauge fixing’’ the boost

symmetry by requiring that 1
N trð ~A0Þ2 with ~A� ¼ O��A� be

minimized with respect to O 2 SOð9; 1Þ. In this sense, the
constraint actually respects the SO(9,1) symmetry.

Let us note that eiSb in the partition function (3) is a
phase factor just as in the path-integral formulation of
quantum field theories in Minkowski space. As is com-
monly done in integrating oscillating functions, we intro-

duce the convergence factor e��jSbj and take the � ! 0
limit after the integration.
The partition function can then be rewritten as

Z ¼
Z

dA
Z 1

0
dr	

�
1

N
trðAiÞ2 � r

�
eiSb��jSbjPfM;

where the integration over A� is assumed to be restricted

by the constraint (4). After rescaling the variables A� !
r1=2A� in the integrand, we integrate over r and get

Z 1

0
drr18ðN2�1Þ=2�1er

2ðiSb��jSbjÞ / 1

jSbj18ðN2�1Þ=4 ; (5)

which diverges for Sb ¼ 0. In order to cure this divergence,
we introduce a constraint

1

N
trðAiÞ2 � L2 (6)

before the rescaling. Then the integration domain for r
becomes [0, L2], and (5) is replaced by fðSbÞ, where fðxÞ is
a function with a sharp peak at x ¼ 0. Thus we arrive at the
model

Z ¼
Z

dAf

�
1

N
trðF��F

��Þ � C

�
PfMðAÞ

� 	

�
1

N
trðAiÞ2 � 1

�



�
�� 1

N
trðA0Þ2

�
; (7)

where 
ðxÞ is the Heaviside step function. The constant C
should be set to zero according to our derivation. If we
consider the C< 0 case, the model (7) may be viewed as
the matrix model motivated from the space-time uncer-
tainty principle [18] with the regularization in the second
line, which we find to be necessary. Since the Pfaffian
PfMðAÞ is real in the present Lorentzian case, the model
(7) can be studied by Monte Carlo simulation without the
sign problem. Note that this is usually not the case for
quantum field theories in Minkowski space.
Monte Carlo results.—We perform Monte Carlo simu-

lation of the model (7) with C ¼ 0 by using the rational
hybrid Monte Carlo algorithm [19], which is quite standard
in recent simulations of quantum chromodynamics includ-
ing the effects of dynamical quarks.
In order to see the time evolution, we diagonalize A0,

and define the eigenvectors jtai corresponding to the ei-
genvalues ta of A0 (a ¼ 1; . . . ; N) with the specific order
t1 < � � �< tN . The spatial matrix in this basis htajAijtbi is
not diagonal, but it turns out that the off-diagonal elements
decrease rapidly as one goes away from a diagonal
element. This motivates us to define n� n matrices
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�AðabÞ
i ðtÞ � ht�þajAijt�þbi with 1 � a, b � n and t ¼

1
n

P
n
a¼1 t�þa for � ¼ 0; . . . ; ðN � nÞ. These matrices repre-

sent the 9d space structure at fixed time t [20]. The block
size n should be large enough to include non-negligible
off-diagonal elements. In Fig. 1 we plot the extent of space
RðtÞ2 � 1

n tr �AiðtÞ2 for N ¼ 16 and n ¼ 4. Since the result

is symmetric under the time reflection t ! �t as a con-
sequence of the symmetry A0 ! �A0, we only show the
results for t < 0. There is a critical �, beyond which the
peak at t ¼ 0 starts to grow.

Next we study the spontaneous breaking of the SO(9)
symmetry. As an order parameter, we define the 9� 9
(positive definite) real symmetric tensor

TijðtÞ ¼ 1

n
trf �AiðtÞ �AjðtÞg; (8)

which is an analog of the moment of inertia tensor. The
nine eigenvalues of TijðtÞ are plotted against t in Fig. 2 for

� ¼ 4:0. We find that three largest eigenvalues of TijðtÞ
start to grow at the critical time tc, which suggests that the
SO(9) symmetry is spontaneously broken down to SO(3)
after tc. Note that RðtÞ2 is given by the sum of nine
eigenvalues of TijðtÞ.

Mechanism of the SSB.—The SSB of SO(9) looks mys-
terious at first sight, but we can actually understand the
mechanism quite intuitively. Let us consider the case in
which � is large. Then the first term of (2) becomes a large
negative value, and therefore the second term has to be-
come large in order to make (2) close to zero as required in
(7). Because of the constraint 1

N trðAiÞ2 ¼ 1, however, it is

more efficient to maximize the second term of (2) at some
fixed time. The system actually chooses the middle point
t ¼ 0, where the suppression on Ai from the first term of
(2) becomes the least. This explains why the peak of RðtÞ at
t ¼ 0 grows as we increase �.

Let us then consider a simplified question: what is the
configuration of Ai which gives the maximum 1

N trðFijÞ2
with fixed 1

N trðAiÞ2 ¼ 1. Using the Lagrange multiplier �,

we maximize the functionG ¼ trðFijÞ2 � � trðAiÞ2. Taking
the derivative with respect to Ai, we obtain
2½Aj; ½Aj; Ai��� �Ai ¼ 0. This equation can be solved if

Ai ¼ �Li for i � d, and Ai ¼ 0 for d < i � 9, where Li

are the representation matrices of a compact semisimple
Lie algebra with d generators. Clearly d should be less than
or equal to 9. It turns out that the maximum of 1

N trðFijÞ2 is
achieved for the SU(2) algebra, which has d ¼ 3, with Li

being the direct sum of the spin- 12 representation and

(N�2) copies of the trivial representation. This implies
the SSB of SO(9) down to SO(3). The SSB can thus be
understood as a classical effect in the � ! 1 limit. When
we tune � with increasing N as described below, quantum
effects become important. We have confirmed [21] that
the n� n matrix Q ¼ P9

i¼1
�AiðtÞ2 has quite a continuous

eigenvalue distribution, which implies that the space is not
like a two-dimensional sphere as one might suspect from
the classical picture.
Removing the cutoffs.—It turned out that one can remove

the infrared cutoffs � and L in the large-N limit in such a
way that RðtÞ scales. This can be done in two steps. (i) First
we send � to 1 with N as � ¼ �Np (p ’ 1

4 ) [21]. The

scaling curve of RðtÞ one obtains in this way depends on �.
(ii) Next we send� to1with L. The two limits correspond
to the continuum limit and the infinite volume limit, re-
spectively, in quantum field theory. Thus the two con-
straints (4) and (6) can be removed in the large-N limit,
and the resulting theory has no parameter other than one
scale parameter.
Let us discuss the second limit (ii) in more detail. We

find that the inequality (6) is actually saturated for the
dominant configurations. Therefore, one only has to
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FIG. 1. The extent of space RðtÞ2 with N ¼ 16 and n ¼ 4 is
plotted as a function of t for five values of �. The peak at t ¼ 0
starts to grow at some critical �.
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symmetry is spontaneously broken down to SO(3).
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make the rescaling A� � LA� in order to translate the

configurations in the model (7) as those in the original
partition function. It turns out that RðtÞ for the rescaled
configurations scales in � by tuning L and shifting t
appropriately. In order to see this, it is convenient to choose
L so that RðtÞ at the critical time t ¼ tc becomes unity, and
to shift t so that the critical time comes to the origin. Then
RðtÞ with increasing � extends in t in such a way that the
results at smaller jtj scale. This is demonstrated in Fig. 3,
where we find a reasonable scaling behavior for N ¼ 16
with � ¼ 2:0, 4.0, 8.0. In fact, supersymmetry of the model
plays an important role here [21].

Summary.—In this Letter we have studied the nonper-
turbative dynamics of the Lorentzian matrix model for type
IIB superstring theory in ten dimensions. In order to make
the model well defined, we introduce the infrared cutoffs
on both the spatial and temporal directions. We find that the
two cutoffs can be removed in the large-N limit. Moreover,
the theory thus obtained has no parameters other than one
scale parameter, which is a property expected for non-
perturbative superstring theory. The SO(9) symmetry
breaks down to SO(3) at some critical time, and the size
of the three-dimensional space increases with time. The
cosmological singularity is naturally avoided due to
noncommutativity.

There are a lot of questions that should be addressed in
our model. One of the most urgent questions is whether a
local field theory on a commutative space-time appears at
the low energy scale. A possible way is to calculate corre-
lation functions of the Wilson loop operators [22]. If this
question is answered in the affirmative, we consider it very
likely that our model really describes the birth of our
Universe from first principles. The next step would be to
show that the four fundamental interactions and the matter
fields appear in our Universe at a later time.
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