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The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color

Ramsey numbers Rðm; nÞ with m, n � 3, only nine are currently known. We present a quantum algorithm

for the computation of the Ramsey numbers Rðm; nÞ. We show how the computation of Rðm; nÞ can be

mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum

evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly

determines the Ramsey numbers Rð3; 3Þ and Rð2; sÞ for 5 � s � 7. We then discuss the algorithm’s

experimental implementation, and close by showing that Ramsey number computation belongs to the

quantum complexity class quantum Merlin Arthur.
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In an arbitrary party of N people, one might ask whether
there is a group of m people who are all mutually ac-
quainted, or a group of n people who are all mutual
strangers. Using Ramsey theory [1,2], it can be shown
that a threshold value Rðm; nÞ exists for the party size N
so that when N � Rðm; nÞ, all parties of N people will
either containmmutual acquaintances, or nmutual strang-
ers. The threshold value Rðm; nÞ is an example of a two-
color Ramsey number. Other types of Ramsey numbers
exist, though we will focus on two-color Ramsey numbers
in this Letter.

One can represent the N-person party problem by an
N-vertex graph. Here each person is associated with a
vertex, and an edge is drawn between a pair of vertices
only when the corresponding people know each other. In
the case where m people are mutual acquaintances, there
will be an edge connecting any pair of them corresponding
vertices. Similarly, if n people are mutual strangers, there
will be no edge between any of the n corresponding
vertices. In the language of graph theory [3], them vertices
form anm clique, and the n vertices form an n-independent
set. The party problem is now a statement in graph theory:
if N � Rðm; nÞ, every graph with N vertices will contain
either an m clique, or an n-independent set. Ramsey num-
bers can also be introduced using colorings of complete
graphs, and Rðm; nÞ corresponds to the case where only
two colors are used.

Ramsey theory has found applications in mathematics,
information theory, and theoretical computer science [4].
An application of fundamental significance appears in the
Paris-Harrington (PH) theorem of mathematical logic [5]
which established that a particular statement in Ramsey
theory related to graph colorings and natural numbers is
true, though unprovable within the axioms of Peano arith-
metic. Such statements are known to exist as a consequence
of Godel’s incompleteness theorem, though the PH theorem
provided the first natural example. Deep connections have

also been shown to exist between Ramsey theory, topologi-
cal dynamics, and ergodic theory [6].
Ramsey numbers grow extremely quickly and so are

notoriously difficult to calculate. In fact, for two-color
Ramsey numbers Rðm; nÞ with m, n � 3, only nine are
presently known [3]. To check whether N¼? Rðm; nÞ re-
quires examining all 2NðN�1Þ=2 N-vertex graphs. The num-
ber of graphs to be checked thus grows superexponentially
with N, and so the task quickly becomes intractable.
Ketonen and Solovay [7] have shown that this is the root
cause for why the statement in the PH theorem cannot be
proved within Peano arithmetic.
In this Letter, we (i) present a quantum algorithm for

calculating Ramsey numbers based on adiabatic quantum
evolution, (ii) numerically simulate the algorithm to verify
that it correctly calculates small Ramsey numbers,
(iii) discuss its experimental implementation, and
(iv) show that Ramsey number computation belongs to the
quantum complexity class quantum Merlin Arthur (QMA).
Optimization problem.—We begin by establishing a 1-1

correspondence between the set of N-vertex graphs and
binary strings of length L ¼ NðN � 1Þ=2. To each
N-vertex graph G there corresponds a unique adjacency
matrix AðGÞ which is an N � N symmetric matrix with
vanishing diagonal matrix elements, and with the off-
diagonal element ai;j ¼ 1ð0Þ when distinct vertices i and

j are (are not) joined by an edge. It follows that AðGÞ is
determined by its lower triangular part. By concatenating
columnwise the matrix elements ai;j appearing below the

principal diagonal, we can construct a unique binary string
gðGÞ of length L for each graph G:

gðGÞ � a2;1 � � � aN;1a3;2 � � � aN;2 � � � aN;N�1: (1)

Given the string gðGÞ, the following procedure deter-
mines the number of m cliques in G. Choose m vertices
S� ¼ fv1; . . . ; vmg from the N vertices of G and form the
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product C� ¼ Qðj�kÞ
ðvj;vk2S�Þ avj;vk

. Note that C� ¼ 1 when S�

forms an m clique; otherwise C� ¼ 0. Now repeat this
procedure for all � ¼ CðN;mÞways of choosingm vertices
from N vertices, and form the sum CðGÞ ¼ P�

�¼1 C�. By
construction, CðGÞ equals the number of m cliques con-
tained in G. A similar procedure determines the number of
n-independent sets in G. Briefly, choose n vertices T� ¼
fv1; . . . ; vng from the N vertices inG, and form the product

I� ¼ Qðj�kÞ
ðvj;vk2T�Þ �avj;vk

, where �avj;vk
¼ 1� avj;vk

. If the

vertex set T� forms an n-independent set, then I� ¼ 1;
otherwise I� ¼ 0. Repeat this for all � ¼ CðN; nÞ ways
of choosing n vertices from N vertices, then form the sum
IðGÞ ¼ P

�
�¼1 I�. By construction, IðGÞ gives the number

of n-independent sets contained in G. Finally, define

hðGÞ ¼ CðGÞ þ IðGÞ: (2)

It follows from the above discussion that hðGÞ is the total
number of m cliques and n-independent sets in G. Thus
hðGÞ � 0 for all graphs G; and hðGÞ ¼ 0 if and only if G
does not contain an m clique or n-independent set.

We can use hðGÞ as the cost function for the following
combinatorial optimization problem. For given integers
(N, m, n), and with hðGÞ defined as above, find an
N-vertex graph G� that yields the global minimum of
hðGÞ. Notice that if N < Rðm; nÞ, the (global) minimum
will be hðG�Þ ¼ 0 since Ramsey theory guarantees that a
graph exists which has no m clique or n-independent set.
On the other hand, if N � Rðm; nÞ, Ramsey theory guar-
antees hðG�Þ> 0. If we begin with N < Rðm; nÞ and incre-
ment N by 1 until we first find hðG�Þ> 0, then the
corresponding N will be exactly Rðm; nÞ. We now show
how this combinatorial optimization problem can be
solved using adiabatic quantum evolution.

Quantum algorithm.—The adiabatic quantum evolution
(AQE) algorithm [8] exploits the adiabatic dynamics of a
quantum system to solve combinatorial optimization prob-
lems. The AQE algorithm uses the optimization problem
cost function to define a problem Hamiltonian HP whose
ground-state subspace encodes all problem solutions. The
algorithm evolves the state of an L-qubit register from the
ground-state of an initial Hamiltonian Hi to the ground-
state of HP with probability approaching 1 in the adiabatic
limit. An appropriate measurement at the end of the adia-
batic evolution yields a solution of the optimization prob-
lem almost certainly. The time-dependent Hamiltonian
HðtÞ for global AQE is

HðtÞ ¼
�

1� t

T

�

Hi þ
�
t

T

�

HP; (3)

where T is the algorithm runtime, and adiabatic dynamics
corresponds to T ! 1.

To map the optimization problem associated with com-
puting Rðm; nÞ onto an adiabatic quantum computation, we
begin with the 1-1 correspondence between N-vertex

graphs G and length L ¼ NðN � 1Þ=2 binary strings
gðGÞ. From Eq. (1) we see that position along the string
is indexed by vertex pairs (i, j). We thus identify a qubit
with each such pair (i, j), and will thus need L qubits.
Defining the computational basis states (CBS) to be the
eigenstates of �0

z � � � � � �L�1
z , we identify the 2L graph

strings gðGÞ with the 2L CBS: gðGÞ ! jgðGÞi. The prob-
lem Hamiltonian HP is defined to be diagonal in the
computational basis with eigenvalue hðGÞ associated with
eigenstate jgðGÞi:

HPjgðGÞi ¼ hðGÞjgðGÞi: (4)

Note that the ground-state energy of HP will be zero iff
there is a graph with no m cliques or n-independent sets.
We give an operator expression for HP below. The initial
Hamiltonian Hi is chosen to be

Hi ¼
XL�1

l¼0

1

2
ðIl � �l

xÞ; (5)

where Il and �l
x are the identity and x-Pauli operator for

qubit l, respectively. The ground-state of Hi is the easily
constructed uniform superposition of CBS.
The quantum algorithm for computingRðm; nÞ begins by

setting N equal to a strict lower bound for Rðm; nÞ which
can be found using the probabilistic method [9] or a table of
two-color Ramsey numbers [3]. The AQE algorithm is run
on LN ¼ NðN � 1Þ=2 qubits, and the energy E is measured
at the end of algorithm execution. In the adiabatic limit
the result will be E ¼ 0 since N < Rðm; nÞ. The value of N
is now incremented N ! N þ 1, the AQE algorithm is
rerun on LNþ1 qubits, and the energy E measured at the
end of algorithm execution. This process is repeated until
E> 0 first occurs, at which point the associated N will be
equal to Rðm; nÞ. Note that any real application of AQE
will only be approximately adiabatic. Thus, the probability
that the measured energy E will be the ground-state
energy will be 1� �. In this case, the algorithm must be
run k	Oðln½1� �
= ln�Þ times so that, with probability
� > 1� �, at least one of the measurement outcomes will
be the true ground-state energy. We can make � arbitrarily
close to 1 by choosing k sufficiently large.
Simulation results.—To test the adiabatic quantum com-

putation of Rðm; nÞ, we numerically simulated the
Schrödinger dynamics generated by the AQE
Hamiltonian HðtÞ. Clearly, these simulations can only be
run at finite values of T. As in Ref. [10], we chose T so that
the algorithm success probability Ps is large compared
to the probability that a randomly chosen CBS will belong
to the D-degenerate ground-state eigenspace of HP (Ps �
D=2LÞ). Here, Ps is the probability that an energy mea-
surement done at the final time T will yield the ground-
state energy Egs of HP. Since a classical computer cannot

efficiently simulate the dynamics of a quantum system, we
can only obtain small Ramsey numbers. In this case, HP

can be found by evaluating the cost function hðGÞ using the
procedure described above Eq. (2).
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We simulated the AQE computation of Rð3; 3Þ and
Rð2; sÞ for 5 � s � 7. Straightforward arguments [3] give
Rð3; 3Þ ¼ 6 and Rð2; sÞ ¼ s. We present our simulation
results in Table I. We see that for all m, n considered, the
threshold valueNt where Egs > 0 first occurs is precisely at

the Ramsey number: Nt ¼ Rðm; nÞ.
For Rð2; sÞ and N ¼ s, Table I gives Egs ¼ 1. For these

cases, graphs corresponding to ground-states of HP will
thus contain either a single s-independent set or a single 2
clique. There is only one s-vertex graph with an
s-independent set, and there are Cðs; 2Þ ¼ sðs� 1Þ=2
graphs with one 2 clique (viz. edge). Thus, the ground-
state degeneracy D ¼ 1þ Cðs; 2Þ, in agreement with the
Rð2; sÞ degeneracies in Table I for N ¼ s ¼ 5, 6, 7. For
Rð3; 3Þ and N ¼ 6, Table I gives Egs ¼ 2. Thus, graphs

corresponding to ground-states are those with (i) two 3
cliques, (ii) two 3-independent sets, or (iii) one 3 clique
and one 3-independent set. Ref. [11] derived the minimum
number of 3 cliques and 3-independent sets that can be
present in an N-vertex graph. This minimum is precisely
our Egs for Rð3; 3Þ and a givenN. ForN ¼ 6, the minimum

value is 2, in agreement with Egs ¼ 2 in Table I. We

carried out both analytical [12] and numerical counts of
the ground-state graphs for Rð3; 3Þ and N ¼ 6. Both ap-
proaches found 1760 graphs giving a ground-state degen-
eracy D ¼ 1760. In all cases appearing in Table I, the
upward jump in D seen upon reaching the Ramsey thresh-
old N ¼ Rðm; nÞ (from below) is responsible for the jump
in the success probability Ps also seen at this threshold.

Although we would like to have calculated larger
Ramsey numbers, this was simply not practical. Note that
the N ¼ 7 simulations use L ¼ 21 qubits. These simula-
tions are at the upper limit of 20–22 qubits at which
simulation of the full AQE Schrödinger dynamics is prac-
tical [10,13,14]. The next smallest Ramsey number is
Rð2; 8Þ ¼ 8 which requires a 28 qubit simulation, well
beyond what can be done practically.

Experimental implementation.—We begin by determin-
ing an operator expression for the problem Hamiltonian
HP which then fixes the AQE Hamiltonian HðtÞ through
Eqs. (3) and (5). Recall that the eigenvalue hðGÞ ¼ CðGÞ þ
IðGÞ counts the total number of m cliques and
n-independent sets in a graph G. For an m-vertex set
S� ¼ fv1; . . . ; vmg, we define the edge set E� ¼ fe�k : k ¼
1; . . . ; Cðm; 2Þg as the set of all edges connecting pairs of

vertices vi, vj 2 S�, and Cðm; 2Þ is the number of ways of

choosing 2 vertices out of m. If S� corresponds to an m
clique in the graph G, the graph string gðGÞ must have 1’s
at all bit positions associated with the edges of E�. Let the
states j0i and j1i satisfy �zjai ¼ ð�1Þajai. Then the op-
eratorH� ¼ Q

e2E�
Pe
1 {where P

e
1 ¼ ð1=2Þ½Ie � �e

z
, and e
labels the qubit associated with edge egwill have jgðGÞi as
an eigenstate with eigenvalue 1 when S� is an m clique,
and zero otherwise. The operator that counts all m cliques

in a graph G is then Hm
cl ¼

PCðN;mÞ
�¼1 H�, and by construc-

tion, Hm
cljgðGÞi ¼ CðGÞjgðGÞi. A similar analysis can be

carried out for n-independent sets. Let T� ¼ fv1; . . . ; vng
be an arbitrary n-vertex set, and �E� its corresponding edge
set. If T� is an n-independent set in a graph G, then the
graph string gðGÞ must have 0’s at all bit-positions asso-
ciated with the edges of �E�. The operator �H� ¼ Q

e2E�
Pe
0

{where Pe
0 ¼ ð1=2Þ½Ie þ �e

z
, and e labels the qubit asso-

ciated with edge eg will have eigenstate jgðGÞi with eigen-
value 1 (0) when T� is (is not) an n-independent set. The
operator that counts all n-independent sets in an arbitrary

graph G is then Hn
is ¼

PCðN;nÞ
�¼1

�H�, and by construction,
Hn

isjgðGÞi ¼ IðGÞjgðGÞi. For calculation of Rðm; nÞ, the
problem Hamiltonian HNmn

P is then

HNmn
P ¼ Hm

cl þHn
is: (6)

Note that HNmn
P contains OðNsÞ terms, where N is the

number of vertices and s ¼ maxfCðN;mÞ; CðN; nÞg. Since
each H� and �H� is a projection operator, their operator
norm will be unity and their matrix elements, being 0’s
and 1’s, are specified with a single bit. Lastly, note
that each term in HNmn

P is a product of at most t ¼
maxfCðm; 2Þ; Cðn; 2Þg �z operators so that HNmn

P is a
t-local Hamiltonian [15]. By using perturbative gadgets,
it can be reduced to a 2-local Hamiltonian [16–18].
For a given HamiltonianHðtÞ, two approaches have been

demonstrated to experimentally implement AQE [19–21].
Refs. [19], [20] partitioned the full evolution into N
subintervals of duration �t ¼ T=N which are sufficiently
short that the propagator Ul for each subinterval l can be
factored via a Trotter expansion. This approach was ap-
plied to three-qubit systems, though it can be used for
arbitrary size qubit systems. Ref. [21] describes experi-
ments using a quantum annealing device designed to im-
plement adiabatic quantum optimization algorithms.

TABLE I. Simulation results for Ramsey numbers Rð3; 3Þ and Rð2; sÞ for 5 � s � 7. Here N is the number of graph vertices, Egs and
D are the ground-state energy and degeneracy, respectively, for the problem Hamiltonian HP, and T and Ps are, respectively, the
algorithm runtime and success probability.

Rð2; 5Þ Rð2; 6Þ Rð3; 3Þ Rð2; 7Þ
N Egs D T Ps N Egs D T Ps N Egs D T Ps N Egs D T Ps

3 0.0 1 5.0 0.591 4 0.0 1 5.0 0.349 4 0.0 18 5.0 0.769 5 0.0 1 8.0 0.865

4 0.0 1 5.0 0.349 5 0.0 1 5.0 0.173 5 0.0 12 5.0 0.194 6 0.0 1 8.0 0.805

5 1.0 11 5.0 0.518 6 1.0 16 5.0 0.286 6 2.0 1760 5.0 0.693 7 1.0 22 8.0 0.938
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Results are reported of AQE solutions for the groundstate
of randomly generated instances of an 8-qubit quantum
Ising spin glass. Work using perturbative gadgets is under-
way to convert HNmn

P into a 2-local form amenable to both
AQE experimental approaches.

Ramsey numbers and QMA.—Quantum complexity the-
ory formalizes the notion of efficient quantum algorithms.
Our interest is in the quantum complexity class QMA
which generalizes the randomized version of the classical
complexity class NP [15,16].

QMA is a class of promise problems where each prob-
lem L is the union of two disjoint sets of binary strings Ly

and Ln corresponding to Yes and No instances of the
problem. For a string x 2 Ly [ Ln, the task is to determine

whether x 2 Ly or x 2 Ln using polynomial resources. Let

H denote a two-dimensional Hilbert space; and jxi the
CBS labeled by the binary string x.

Definition 1.—(QMA) Let x 2 L ¼ Ly [ Ln and � ¼
2��ðjxjÞ. The promise problem L belongs to QMA if there
exists a quantum polynomial-time verifier Vðjxi; jyiÞ !
f0; 1g, and a polynomial �ðjxjÞ such that: (i) for all x 2
Ly, there exists an j�i 2 H �ðjxjÞ such that PrfVðjxi; j�iÞ ¼
1g � 1� �; and (ii) for all x 2 Ln and j�i 2 H �ðjxjÞ,
PrfVðjxi; j�iÞ ¼ 1g � �. Here PrfVðjxi; j�iÞ ¼ 1g is the
probability that V concludes x 2 Ly when the quantum

witness is j�i. Informally, if x is a Yes (No) instance, there
exists a (no) quantum witness j�i which causes V to
correctly (mistakenly) conclude x 2 Ly with probability

at least 1� � (greater than �).
A promise problem is QMA-complete if it belongs to

QMA and all problems in QMA are polynomially reduc-
ible to it. It has been shown [15,16] that the k-local
Hamiltonian is QMA-complete for k � 2.

Definition 2.— (k-local Hamiltonian) Consider an
L-qubit Hamiltonian H ¼ P

r
j¼1 Hj, where r ¼ polyðLÞ;

and each term Hj acts on at most k qubits (k-local); has

operator norm kHjk � polyðLÞ; and matrix elements

specified by polyðLÞ bits. Finally, two constants a < b
are specified. The Hamiltonian H is a Yes instance if its
ground-state energy Egs < a, and a No instance if Egs > b.

The problem is, given a k-local Hamiltonian H, determine
whether H is a Yes or a No instance.

Our Ramsey numberAQE algorithm leads naturally to an
example of a t-local Hamiltonian which we call RAMSEY.
We have seen that the Ramsey problem HamiltonianHNmn

P

is a t-local Hamiltonian; is a sum of a polynomial number of
termsHj ¼ H� or �H�; and eachHj satisfies the polynomial

bounds specified in Definition 2. Suitable choices for the
constants a and b are 0:01< a< 0:1 and b ¼ 1� a. Yes
instances of RAMSEY then correspond to N < Rðm; nÞ
sinceEgs ¼ 0< a, and No instances toN � Rðm; nÞwhere
Egs � 1> b. It is possible to carry over the proof that the

k-local Hamiltonian is in QMA [15] to show that RAMSEY
is also in QMA.

For an AQE algorithm with nondegenerate ground-state,
the runtime is largely determined [8] by the minimum
energy gap � ¼ mintfE1ðtÞ � E0ðtÞg. This connection fails
for the Ramsey algorithm whenN ¼ Rðm; nÞ as the ground
state becomes degenerate during its execution and so �
vanishes. Determining how the runtime scales when� ¼ 0
(as with the Ramsey algorithm) is an open problem in
adiabatic quantum computing.
In this Letter, we have presented a quantum algorithm

that calculates two-color Ramsey numbers Rðm; nÞ; nu-
merically simulated the algorithm and shown it correctly
determined small Ramsey numbers; discussed its experi-
mental implementation; and shown that Ramsey number
computation is in the quantum complexity class QMA.
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