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We propose a general method for optical control of magnetic Feshbach resonances in ultracold atomic

gases with more than one molecular state in an energetically closed channel. Using two optical

frequencies to couple two states in the closed channel, inelastic loss arising from spontaneous emission

is greatly suppressed by destructive quantum interference at the two-photon resonance, i.e., dark-state

formation, while the scattering length is widely tunable by varying the frequencies and/or intensities of the

optical fields. This technique is of particular interest for a two-component atomic Fermi gas, which is

stable near a Feshbach resonance.
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Ultracold atomic gases with controllable interactions are
now widely studied by exploiting collisional (Feshbach)
resonances [1]. In contrast to Bose gases, which suffer
from three-body inelastic processes near a resonance,
two-component Fermi gas mixtures are stable as a result
of the Pauli principle, and can be rapidly cooled to quan-
tum degeneracy by evaporation in the resonant regime [2].
Typically, in a Feshbach resonance, an external magnetic
field controls the interaction strength between spin-up and
spin-down atoms, by tuning the energy of an incoming,
colliding atom pair into resonance with that of a bound
molecular state in an energetically closed channel [3,4].
Optical tuning methods offer advantages over magnetic
tuning, such as rapid temporal control and high resolution
spatial control of the interaction strength near a Feshbach
resonance, opening many new fields of study, such as
nonequilibrium strongly interacting Fermi gases [5]. The
use of electromagnetically induced transparency (EIT) to
control Feshbach resonances was suggested by Harris [6].
Optical control of Feshbach resonances has been explored
previously in Bose gases [7,8] and currently is receiving
substantial attention [9]. Optical Feshbach resonances
(OFR), which employ photoassociation light to drive a
transition from the continuum of the incoming atom pair
state to an excited molecular bound state, has been pro-
posed and experimentally observed [8,10–14]. However,
light-induced inelastic collisions and the accompanying
loss limit its practical applicability. Submicron-scale spa-
tial modulation of an interatomic interaction has been
observed in an alkaline-earth atomic condensate [15].
Recently, Rempe and co-workers have used a single optical
field to control the scattering length near a magnetic
Feshbach resonance by driving a transition between a
ground state in the closed channel and an excited molecular
state. In this method, a large laser intensity and a large
frequency detuning are required for suppressing the light-
induced loss [9]. OFR also has been studied by using a
narrow intercombination line of a bosonic gas 88Sr, with

the laser frequency tuned far away from resonance [16].
Unfortunately, all of these methods suffer from limited
tunability of the scattering length as well as loss and
heating, which arise from light-induced inelastic
collisions.
In this Letter, we suggest a general ‘‘dark-state’’ optical

method for widely controlling the interaction strength near
a magnetic Feshbach resonance, while suppressing sponta-
neous scattering by quantum interference, in ultracold
atomic gases with at least two molecular states in the
closed channel. In a Fermi gas near a broad Feshbach
resonance, this method yields a double suppression of the
spontaneous scattering rate, as the probability of occupy-
ing the closed-channel molecular state near and above
resonance has been measured to be very small, � 10�5

in 6Li [17].
The basic scheme, Fig. 1, is illustrated for a pair of

atoms in two hyperfine states (denoted spin-up and spin-
down), which undergoes an s-wave collision in the ground
electronic state triplet molecular potential (open channel).
The hyperfine interaction couples the scattering continuum
of the open channel to a bound singlet vibrational state jg1i
in the closed channel. An applied bias magnetic field B
tunes the total energy of the colliding atom pair downward,
near jg1i, producing a collisional (Feshbach) resonance. A
second molecular ground state jg2i is not coupled to the
open channel; For example, jg2i can be a different singlet
vibrational state. Two optical fields with frequencies !1

and !2 couple jg1i and jg2i to the electronically excited
singlet vibrational state jei. To determine the s-wave scat-
tering length in the presence of the light fields, we use a
method similar to that employed by Fano [18].
We write the Hamiltonian as

H ¼ H0
hf ��zBþ Eg1 jS1; g1ihS1; g1j þ Eg2 jS2; g2ihS2; g2j

þ EejSe; eihSe; ej þ p2

m
jT; kihT; kj þHint; (1)

where the optical interaction Hamiltonian is
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Hint¼�@�1cosð!1tÞjg1ihej�@�2cosð!2tÞjg2ihejþH:c:

Here, Ej (j ¼ g1, g2, e) is the molecular internal energy

and �z the magnetic dipole moment operator. H0
hf is the

hyperfine interaction with matrix elements between the
triplet T and singlet states S1;2 given by hS1jH0

hfjTi ¼ Vhf

and hS2jH0
hfjTi ¼ 0. The energy of the triplet state is

magnetic field dependent, hTjðH0
hf ��zBÞjTi � ET .

�1;2 ¼ hejdjg1;g2iE1;2

@
are the Rabi frequencies corresponding

to the dimer transitions jg1i ! jei and jg2i ! jei,
respectively.

The time-dependent wave function takes the form

jc EðtÞi ¼ c1jS1; g1i þ c2jS2; g2i þ cejSe; ei
þ

Z
k0�k

d3k0cTðk0ÞjT; k0i þ ~cTðkÞjT; ki: (2)

Here ~cTðkÞjT; ki represents the chosen incoming state with
energy E ¼ ET þ @

2k2=m, where k is the wave vector for
the relative momentum of the colliding atoms.

We take cj ¼ bje
�i½Eþ@!1�ej�@ð!2�!1Þ�2j�t=@ (where j ¼

1, 2, e, T). Using the rotating wave approximation and
assuming that the amplitudes bj of the molecular states

jg1i, jg2i, and jei vary slowly compared to �e and
j�1j2=ð�e � i�e=2Þ, we obtain

0 ¼ �gb1 ���
1

2
be þ

Z
k0�k

d3k0gðk0ÞbTðk0Þ þ gðkÞ~bTðkÞ;
(3a)

0 ¼ �b2 ���
2

2
be; (3b)

0 ¼ �
�
�e þ i�e

2

�
be ��1

2
b1 ��2

2
b2; (3c)

0 ¼ bTðk0Þ
�
ET þ @

2k02

m
� E

�
=@þ gðk0Þb1; (3d)

where gðkÞ � Vhfhkjg1i=@. Here, �g ¼ ðEg1 � EÞ=@ and

the single photon detuning is �e ¼ !1 � ðEe � EÞ=@. The
two-photon detuning is � � ð!2 �!1Þ � ðE� Eg2Þ=@.
The radiative decay rate of the molecular excited state is
�e ¼ 2=�spont, where �spont is the atom spontaneous life-

time. When the hyperfine coupling between jg1i with the
atomic pairs is strong, as occurs near a broad s-wave
Feshbach resonance, adiabatic conditions may be difficult
to achieve for bosons, which suffer from three-body colli-
sional loss, but are readily achieved for fermions.
The steady state solutions for the molecular amplitudes

determine be in terms of b1, which then determines the

ratio b1=~bT . Equation (3d) yields

bTðk0Þ ¼ gðk0Þ
E� ET � @

2k02
m

b1: (4)

When the interatom distance r is large, the molecular
wave functions ! 0 and the continuum state jki takes its
asymptotic form / sinðkrþ �bgÞ=kr, where tan�bg ¼
�kabg is the phase shift arising from the background

scattering in the triplet potential. Inserting Eq. (4) into
Eq. (2), the scattering state jc sci is given by

jc scðr ! 1Þi ¼ sinðkrþ �bg þ �resÞ
~bT
r
jTi; (5)

where �res ¼ arctanð2�2mkgðkÞ
@
2

b1
~bT
Þ is the phase shift arising

from the coupling of the incoming continuum atoms state
and the vibrational states of the singlet potentials.

Using the definition of the scattering length, a ¼
�limk!0ð�bgþ�res

k Þ, the complex-valued s-wave scattering

length, a ¼ a0 þ ia00, takes the simple form

a ¼ abg þ 2�2gðkÞ2m=@2

E� Eg1 �
R
k0�k d

3k0 gðk0Þ2
E�ET�@

2k02
m

þ @��2
1=4

ð�e�i�e=2Þ���2
2
=4

�������������
k!0

: (6)

For �1 ¼ 0, Eq. (6) immediately yields the well-known result for a magnetically induced Feshbach resonance

Triplet
Singlet

Singlet

Vhf

FIG. 1 (color online). Scheme for ‘‘dark-state’’ optical control
of a Feshbach resonance using two closed-channel molecular
states. Optical fields of frequencies !1 and !2 and Rabi fre-
quencies �1 and �2, respectively, couple ground singlet mo-
lecular states jg1i and jg2i to the excited molecular state jei; Vhf

is the hyperfine coupling between the incoming atomic pair state
in the open (triplet) channel and jg1i, which is responsible for a
magnetically controlled Feshbach resonance.
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a ¼ abg

�
1� �B

B� B0

�
: (7)

Here the energy detuning is ���ðB� B0Þ ¼ E� Eg1 �
�Eðk ! 0Þ, where �� is the difference between the mag-
netic moments of an atom pair and a molecule in state g1
and B0 is the resonant magnetic field. The energy shift
arising from the hyperfine coupling of jg1i to the contin-

uum is �EðkÞ � R
k0�k d

3k0 gðk0Þ2
E�ET�@

2k02
m

and �B ¼
2�2gðkÞ2m=@2

abg��
jk!0 is the resonance width. In general,

a0 ¼ abg

�
1� �

�2ð4�0�2 ��2
1�Þ þ ð�e�Þ2�0

4ð�0�2 � �j�1j2=4Þ2 þ ð�0��eÞ2
�
;

(8)

where � ¼ �B��=@ and �2 ¼ �e�� j�2j2=4.
The two-body loss rate constant arising from optical

scattering, K2ðm3=sÞ ¼ �8�@a00=m is

K2 ¼ �e�
2j�1j2�

4ð�0�2 � �j�1j2=4Þ2 þ ð�0��eÞ2
; (9)

where � ¼ 4�abg�B��=m. We see that K2 is suppressed

by the square of the two-photon detuning � for �0 ¼
��ðB� B0Þ=@ � 0. Actually, the �1 field also weakly
drives transitions of the incoming atom pair states (mostly
triplet) to the excited molecular state jei (singlet), with a
small Rabi frequency f�1, where f � 1. Near the
Feshbach resonance, where �0 is small, we find that the
corresponding photoassociation rate is suppressed. Further,
one can show that even including photoassociation, the
two-body loss is still proportional to �2 and is thus greatly
suppressed. Interference in the f-dependent term causes a
minimum in the photoassociation rate [19], which we will
discuss in more detail elsewhere.

The s-wave scattering length and corresponding loss as a
function of the effective two-photon detuning �=�e are
shown in Fig. 2, using parameters for 6Li. When the
effective two-photon detuning � is exactly zero, there is
a minimum of the loss. If the decay rate between state jg1i
and jg2i is negligible, as is the case in our scheme, the
imaginary part of Eq. (6) is zero, as for EIT, where the loss
is completely suppressed. For these conditions, the adia-
batic solutions for the molecular amplitudes b2 and be in
terms of b1 are

be ¼ 0; (10a)

b2 ¼ ��1

�2

b1: (10b)

The bound-state probability jb1j2 can be obtained using the
normalization condition, and is related to the molecular
fraction measured in Ref. [17]. Equation (10a) clearly
shows that there is no population for the excited molecular
state jei: atom pairs are completely trapped in the two

ground molecular states, which is a consequence of quan-
tum interference, i.e., a ‘‘dark’’ state.
The dark-state method enables control of the scattering

length with very small loss by changing the Rabi frequen-
cies �1 and �2 for a fixed magnetic field. Figure 3 shows
a0 and a00 in units of the background scattering length abg
as a function of the Rabi frequency�2 at !2 ¼ !eg2 , two-

photon detuning � ¼ 0:05�e and �1 ¼ 5�e. The scatter-
ing length dramatically changes by ’ 150abg as the Rabi

frequency �2 is increased. The scattering length also can
be made positive or negative, depending on whether the
initial value of magnetic field is set to the Bose-Einstein
condensation side (below) or the BCS side (above) the
Feshbach resonance. The inset shows the loss ratio
a00ð�2Þ=½a00ð�2 ¼ 0Þ� between the ‘‘dark-state’’ scheme
and typical single laser driving scheme (�2 ¼ 0) as a
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FIG. 2 (color online). Scattering length as a function of the
effective two-photon detuning � in units of �e. Real a0=abg
(solid blue curve) and imaginary a00=abg (dashed red curve).

The parameters used here are for 6Li: �B ¼ 300 G, ��=@ ¼
2�B=@ ¼ 2�� 2:8 MHz=G, �e ¼ 2�� 12 MHz, and abg ¼
�1405a0. We take �1 ¼ 0:8�e, �2 ¼ 2�e, !2 ¼ !eg2

,

B� B0 ¼ 2 G.
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FIG. 3 (color online). Real a0=abg and imaginary a00=abg com-
ponents of the scattering length as a function of�2=�e for�1 ¼
5�e, and � ¼ 0:05�e. All other parameters are the same as in
Fig. 2. The solid blue line (bottom) is the scattering length
without the laser fields (magnetic Feshbach resonance). The
dashed orange line denotes a00 ¼ 0. Inset: Loss ratio between
the ‘‘dark-state’’ scheme and a typical single laser scheme
(where �2 ¼ 0) as a function of �2=�e.
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function of �2=�e, demonstrating that the loss can be
greatly suppressed using dark states in the closed channel,
compared with previous methods, where a control field
with only one frequency is used [9]. For example, using
the dark-state method with �2 ¼ 3�e, the loss is 2 orders
of magnitude smaller than the single field method of
Ref. [9]. In addition, by dynamically changing �2 and
�1, stimulated Raman adiabatic passage (STIRAP), can
be used for coherent transfer of the populations between g1
and g2, which is very important in the formation of the
rovibrational ground molecules.

The dark-state method also enables control of the mag-
netic field dependence of the scattering length for fixed
laser parameters, as shown in Fig. 4 where the real and
imaginary parts of the scattering length, a0=abg and a00=abg,
are plotted as a function of B� B0. The plot shows a three
peak structure, with a very narrow central resonance, char-
acteristic of the dark-state method, which permits large
changes in the scattering length for small changes in B. In
contrast, using a single field control method [9], there are
two broad resonances and corresponding losses arising
from typical Autler-Townes (AT) doublets. The loss shows
three peaks, similar to an EIT medium inside an optical
cavity, where there are three transmission peaks: one nar-
row central peak corresponding to the dark state and two
side peaks corresponding to dressed Rabi splittings [20].

The dark-state method is readily implemented in fermi-
onic 6Li, where jg1i corresponds to the highest lying 38th
vibrational state, located 1.58 GHz below the singlet con-
tinuum of the ground electronic (X1

Pþ
g ) state. In this case,

we can take jg2i to be 37th vibrational state, located
53.5 GHz below jg1i. The optical frequencies can be
generated by frequency offset locking two diode lasers to
a cavity. For comparison, in bosonic 85Rb, the two highest
lying vibrational states are located 195 MHz and 1.53 GHz
below the singlet continuum. In this case, both frequencies
can be generated by modulation of a single laser source.
For the excited electronic state of 6Li (A1

Pþ
u ), we take jei

to be the v0 ¼ 68 vibrational state, which has the largest
Franck-Condon factor with jg1i [17,21]. The transition
wavelength is 673.7 nm, compared to 671.0 nm for the

atomic line. The Rabi frequency for the molecular transi-

tion g1 ! e is �1 ’ 0:59 MHz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðmW=cm2Þp

[17,21], and
the spontaneous decay rate is �e ’ 12 MHz. Finally, the
background scattering length is abg ¼ �1405a0 [22].

In conclusion, we have shown that the scattering length
near a magnetic Feshbach resonance can be widely con-
trolled and manipulated using a dark state optical method,
when there is more than one molecular state in the closed
channel. In contrast to previous single optical field meth-
ods, the closed-channel dark-state approach employs
destructive quantum interference, arising from two
closely spaced optical transitions, to greatly suppress the
two-body light-scattering induced loss and heating of the
atomic gas. The method has important applications in
ultracold quantum gases, enabling rapid temporal and
high resolution spatial control of interactions and studies
of nonequilibrium dynamics on fast time scales, as well as
studies of the dynamics unstable systems, such as Bose
gases near Feshbach resonances and three-state Fermi
gases.
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