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Recent studies of strongly interacting atoms and photons in optical cavities have rekindled interest in

the Dicke model of atomic qubits coupled to discrete photon cavity modes. We study the multimode Dicke

model with variable atom-photon couplings. We argue that a quantum spin-glass phase can appear, with a

random linear combination of the cavity modes superradiant. We compute atomic and photon spectral

response functions across this quantum phase transition, both of which should be accessible in

experiments.
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Introduction.—Ultracold atoms in optical cavities have
emerged as attractive new systems for studying strongly-
interacting quantum many body systems. Photon exchange
can mediate long-range interactions between the atomic
degrees of freedom, and this opens up rich possibilities for
correlated phases. In the celebrated atomic realizations of
the superfluid-insulator quantum phase transition [1], the
light field acts in a secular manner, creating a potential
which traps the atoms in an optical lattice; consequently
the atom-atom interactions are only on-site, and this limits
the range of possible phases. In contrast, the seminal recent
experiments of Baumann et al. [2,3], realizing a supersolid
phase, have long-range interactions mediated by active
photon exchange [4].

Baumann et al. argued that their experiments could be
described by the Dicke model, as in the proposal of Nagy
et al. [5]. The Dicke model couples photons in a single
cavity mode uniformly to N atomic two-level systems
(‘‘qubits’’). In the limit N ! 1, this model exhibits a
phase transition [6–9] to a ‘‘superradiant’’ phase when
the atom-photon coupling is strong enough. In terms of
the qubits, the superradiant phase is a ‘‘ferromagnet’’
which spontaneously breaks a global Ising symmetry, and
so we refer to it as FMSR. In the experiments by Baumann
et al., the superradiance of the cavity photon mode is
accompanied by ‘‘self-organization’’ of the atoms into a
density wave pattern [10–12].

Here we study extensions of the Dicke model to multiple
photon cavity modes, and with nonuniform couplings be-
tween the atomic qubits and the photon modes. Spatial
mode variations for the single-mode Dicke model were
considered in Ref. [13]. Multimode Dicke models have
been studied earlier [6,14–16], but were simplified by
ignoring the variations in the atom-photon couplings. We
argue here that qualitatively new physics emerges in the
multimode case when the spatial variation is treated seri-
ously. We show that large variations in the atom-photon
couplings can give rise to a quantum spin-glass (QSG)
phase. We will describe quantum-critical dynamics asso-
ciated with the onset of this spin-glass order.

Dimer et al. [17] have discussed an experimental real-
ization of the Dicke model using internal atomic degrees
of freedom, that is, Raman transitions between multiple
atomic levels. We expect that such schemes can be gener-
alized to a multimode Dicke model that respects a global
Ising symmetry, which is then spontaneously broken in the
FMSR and QSG phase, respectively. More specific realiza-
tions of the multimode Dicke model were described re-
cently by Gopalakrishnan et al., in a paper [18] which
appeared while our work was being completed. The same
authors had previously outlined how Bose-Einstein con-
densates in multimode cavities can lead to frustration and
glassy behavior [11,12]. Such experiments on the multi-
mode Dicke model would provide a unique realization of a
quantum spin glass with long-range couplings, and provide
a long-awaited testing ground for theories of quantum
systems with strong interactions and disorder. Condensed
matter realizations of quantum spin glasses have shorter-
range couplings, and so do not directly map onto the
theoretically solvable systems analyzed in the present
Letter.
Before describing our computations, we point out a key

distinction between the transitions involving onset of
FMSR versus QSG order. In the single-mode Dicke
model, all the qubits align in a common direction near
the FMSR phase, and can therefore be described by a
collective spin of length N=2 which behaves classically
in the limit of large N. Consequently, the dynamics near
the phase transition can be described by classical equations
of motion [19], and the single-mode Dicke model does
not realize a quantum phase transition in the conven-
tional sense of condensed matter physics. In contrast,
we will argue here that the onset of QSG order in the
multimode Dicke model has nontrivial quantum
fluctuations even in the limit of large N, and the critical
properties cannot be described by an effective classical
model. Experimental studies are therefore of great
interest.
Model.—The Hamiltonian of the multimode Dicke

model is
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This describes N two-level atomic qubits with level split-
ting�=2 andM photon modes with frequencies!i coupled
by an atom-photon coupling gi‘ which depends on the

photon (i) and atom (‘) number. ayi , ai are bosonic creation
and annihilation operators, respectively, fulfilling canoni-
cal commutation relations.�x;z

‘ are spin-1=2 operators with
Pauli matrix representation. As explained in detail in
Refs. [17,18], the two states of the Ising spin in Eq. (1)
map onto two different stable ground-state sublevels, j1i
and j0i, of three-level � atoms. j1i and j0i are indirectly
coupled through a pair of Raman transitions to an excited
state jei which are driven by the classical field of a pair of
external lasers. Upon adiabatic elimination of jei, one
obtains Eq. (1) with �z

‘ ¼ j1‘ih1‘j � j0‘ih0‘j and �x
‘ ¼j1‘ih0‘j þ j0‘ih1‘j. The parameters !i, �, and gi‘ can be

controlled through laser frequencies and intensities. This
tunability enables access to the strong-coupling Dicke
regime. A dispersive shift of the cavity frequencies

�ayi aj�z does not modify our results significantly, and

so will be set to zero for simplicity. A simple choice
for a spatially varying atom-photon coupling is gi‘ ¼
g cosðkix‘Þ with ki the wave vector of the photon mode,
and x‘ the coordinate of atom ‘.

In the single-mode, large photon wavelength case, we

have M ¼ 1, !i ¼ !0, and gi‘ ¼ g=
ffiffiffiffi
N

p
and the model

can be solved exactly in the N ! 1 limit [6,7]. At zero
temperature, there is a continuous phase transition between
a paramagnetic phase (PM) and a superradiant ferromag-

netic phase (FMSR) at g ¼ gc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�!0=8

p
at which the

Ising symmetry ða;�xÞ ! ð�a;��xÞ, is spontaneously
broken.

For the multimode Dicke model, it is useful to integrate
out the photon degrees of freedom in a path-integral
representation. Then the qubits are described by a
Hamiltonian similar to the Ising model in a transverse field,

Heff ¼ �

4

XN
‘¼1

�z
‘ �

1

2

X
‘m

J‘m�
x
‘�

x
m; (2)

The exchange interactions J‘m are mediated by the photons
and have a frequency dependence associated with the
photon frequencies !i; thus Eq. (2) is to be understood
as an action appearing in an imaginary time path-integral
summing over time-histories of the qubits. The long-range
exchanges

J‘mð�Þ ¼ XM
i¼1

2gi‘gim!i

�2 þ!2
i

; (3)

depend on �, the imaginary frequency of the qubits in the
path integral. Note that although we have formally inte-
grated out the photons, we demonstrate below that the

photon-photon correlation function is directly related to
the atom-atom correlation function as obtained by solving
Eq. (2).
If we ignore the frequency dependence in Eq. (3), the

J‘m have a structure similar to the Hopfield model of
associative memory [20], with M ‘‘patterns’’ gi‘. For M
small, it is expected that such a model can haveM possible
superradiant ground states with FMSR order h�x

‘i / gi‘,
i ¼ 1 . . .M. In the spin-glass literature, these are the
Mattis states which are ‘‘good’’ memories of the patterns
g [20]. The critical properties of the onset of any of these
FMSR states should be similar to those of the single-mode
Dicke model.
Our interest in the present Letter is focused on larger

values ofM, where the summation in Eq. (3) can be viewed
as a sum over M random numbers. Then, by the central
limit theorem, the distribution of J‘mð�Þ is Gaussian.
Alternatively, the randomness of J‘mð�Þ can be enhanced
by passing the trapping laser beams through diffusers so
that atomic positions x‘ are randomly distributed inside the
cavity [18]. In either case, we assume a Gaussian distribu-
tion characterized by its mean and variance

J‘mð�Þ ¼ J0ð�Þ=N
�J‘mð�Þ�J‘0m0 ð�0Þ ¼ ð�‘‘0�mm0 þ �m‘0�‘m0 ÞKð�;�0Þ=N;

(4)

where the line represents a disorder average, and �J‘m is
the variation from the mean value. We have assumed
couplings between different sites are uncorrelated, and
this will allow an exact solution in the N ! 1 limit,
modulo an innocuous softening of the fixed length con-
straint on the Ising variable [21,22]. We will allow arbi-
trary frequency dependencies in J0ð�Þ and Kð�;�0Þ. The
factors of N ensure an interesting N ! 1 limit [23].
Especially for finite M, one could also use the methods
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FIG. 1 (color online). Zero-temperature phase diagram for
!0 ¼ 1, � ¼ 1 computed from Eq. (11). PM means paramagnet,
FMSR superradiant ferromagnet, and QSG quantum spin-glass. q
is the Edwards-Anderson order parameter and c is the atomic
population inversion or ferromagnetic order parameter.
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of Ref. [20] to extend our analysis to models in which the
gi‘ rather than the J‘mð�Þ are taken as independent random
variables. However, as long as the photon modes can be
chosen so that the J‘mð�Þ vary in sign and magnitude, our
analysis should remain qualitatively correct also for
smaller values of M.

Key results.—We will show below that, in the limit of
large atom number N, the results depend only upon
J0ð� ¼ 0Þ and Kð�;��Þ. Here, we will display the phase
diagram and spectral response functions for the simple
choices J0ð0Þ ¼ 2g2=!0 and Kð�;��Þ � J2ð�Þ with

Jð�Þ ¼ 2t2!0=ð�2 þ!2
0Þ: (5)

In Fig. 1, we depict the ground-state phase diagram; a
related phase diagram in a condensed matter context was
obtained in Ref. [24]. All phase transitions are continuous
and the respective phase boundaries merge in a bicritical
point at (t2bc ¼ 0:086, g2bc ¼ t2bc).

The intersection of the PM-FMSR phase boundary with
the vertical axis at t2 ¼ 0 corresponds to the phase tran-
sition in the single-mode Dicke model without disorder
[8,17]. In this case, a number of analytical results can be
obtained from Eq. (11), in agreement with the earlier work.
The critical atom-photon coupling is g2c ¼ �!0=8 and the
local �x

‘ spin susceptibility in the FMSR phase is (for

imaginary frequencies)

Qaa
‘ ð�Þjt2¼0 ¼

�

�2 þ 2�g2=!0

þ c 22��ð�Þ: (6)

The corresponding radio frequency (rf) spectral response
function of the atomic qubits for real frequencies,

�Im½Qaaði� ! �þ i0þÞ�, is depicted in Fig. 2. The
superradiance is encoded in the zero frequency delta func-
tion contribution, whose weight is proportional to the
atomic population inversion c . However, away from the
zero frequency delta function, there is a spectral gap, and
the remaining spectral weight is a delta function at fre-

quency
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�g2=!0

p
.

The superradiance also appears as a photon condensate
haii¼�P

‘ðgi‘=ð2!iÞÞh�x
‘i. We have computed the atomic

population inversion, h�x
‘i ¼ c , and the Edwards-

Anderson order parameter h�x
‘i2 ¼ qQSG in Eqs. (13) and

(14). Both of these are related to haii, but computation
of the latter requires more specific knowledge of the gi‘.
For � � 0, the photon correlation function follows from
Eq. (6)

hayi ð�Þajð�Þi ¼
�
ði��!iÞ�ij þ

XN
‘¼1

gi‘gj‘Q
aa
‘ ð�Þ

��1
;

(7)

where the right-hand side is a matrix inverse, as can be
obtained from integrating out the atomic fields from the
path-integral representation of Eq. (1).
Upon introducing small disorder (with t � 0), as long as

we remain in the FMSR phase, the zero frequency delta
function and spectral gap survive, although the higher
frequency spectral weight changes, as shown in Fig. 2.
This spectral gap is present across the phase transition
from the FMSR phase to the PM phase. Thus all the low
energy fluctuations in the critical theory for this transition
are restricted to the zero frequency delta function, which
can be described in classical theory for the spins: this is the
reason this transition is more properly considered as a
classical phase transition.
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FIG. 2 (color online). rf spectral response function of the
atomic qubits in the FMSR phase for various photon frequencies
and t2 ¼ 0:025, g2 ¼ 0:2, � ¼ 1. � is a real measurement
frequency. The red arrow at � ¼ 0 illustrates the delta function
contribution with weight q� c 2 from Eqs. (12) and (13). The
value of the gap is given above Eq. (13). For the Dicke model
without disorder (t2 ¼ 0), the spectral function following from
Eq. (6) consists of nothing but two delta functions: the red arrow

at � ¼ 0 and the grey arrow at � ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=!0

p
(plotted for

!0 ¼ 1:015).
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FIG. 3 (color online). rf spectral response function of the
atomic qubits in the QSG phase for various photon frequencies
and t2 ¼ 0:175, g2 ¼ 0:05, � ¼ 1. The red arrow at � ¼ 0
illustrates the delta function contribution with weight
q� qQSG from Eqs. (12) and (14).
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For a sufficiently large value of t2, the system undergoes
a quantum phase transition to the QSG ground state. In
contrast to the PM-FMSR transition, at the QSG transition,
and in the entire QSG phase, there is spectral weight at a
continuum of frequencies reaching zero (see Fig. 3). Thus
the onset of QSG order from the PM phase is a genuine
quantum phase transition, whose universality class was
described in Ref. [22].

The PM phase is clearly delineated from both, the QSG
and the FMSR phases: the PM phase has a gapped spectral
response and no superradiant photon condensates.

We also note that in all phases, while the spectral func-
tion has a universal form at low frequencies, its high
frequency behavior is strongly dependent upon the forms
of J0ð�Þ and Jð�Þ. For the forms in Eq. (5), the spectral
function is suppressed to zero at � ¼ !0.

Experimental signatures.—The rf spectral response
function of the atomic qubits presented in Figs. 2 and 3
should be observable via radiofrequency spectroscopy
[25,26].

Measuring the spectrum of photons leaving the cavity
through its imperfect mirrors at loss rate � allows for an
in situ measurement of our phase diagram, Fig. 1. Our
prediction for the spectrum of intracavity photons,
Eq. (7), can be related to the extra-cavity photons via the
input-output formalism [17,27,28]. For this case of a dis-
sipative Dicke model, we note a similarity of the decay
effects to those in theories of metallic spin glasses [29], in
which the spin qubits are coupled to a ‘‘reservoir’’ of
continuum spin excitations near the Fermi surface. This
coupling leads to a damping term in the dynamics of each
spin, but does not significantly modify the spin-spin inter-
actions responsible for the spin-glass phase. Similarly, for
the dissipative Dicke model, decay into photons outside the
cavity will introduce various damping terms, e.g., a �j�j
term in the denominator of Eq. (3). As in the previous
analyses [29], we expect that the quantum spin-glass tran-
sition will survive in the presence of damping, although
there will be some changes to the critical properties [30].

As in other glasses, we expect slow relaxational dynam-
ics, along with memory and aging effects in the QSG phase
which should be observable via local spin addressing pro-
tocols and measuring the spin relaxation time scale [18].

Conclusion.—Observations of these effects in quantum
optic systems would be remarkable. Moreover, the spin-
glass physics is driven by long-range interactions, and this
makes the theoretical models analytically tractable. We
therefore have prospects for a quantitative confrontation
between theory and experiment in a glassy regime, some-
thing which has eluded other experimental realizations of
spin glasses.

Details of the calculation.—As discussed in
Refs. [21,22], each Ising qubit, with on-site gap �=2, is
conveniently represented by fluctuations of a nonlinear
oscillator �‘ð�Þ (� is imaginary time) which obeys a
unit-length constraint. Their action at temperature T is then

S0½�;�� ¼ 1

2�

XN
‘¼1

Z 1=T

0
d�½ð@��‘Þ2 þ i�‘ð�2

‘ � 1Þ�; (8)

where � is imaginary time, and the �‘ are Lagrange multi-
pliers which impose the constraints. The only approxima-
tion of this Letter is to replace the �‘ by their saddle-point
value, i�‘ ¼ �, and to ignore their fluctuations. For de-
coupled oscillators, this saddle-point value is � ¼ �2=4,
the � susceptibility is �=ð�2 þ�2=4Þ, and the resulting
gap, �=2, has been matched to that of the Ising spin.
The interactions between the qubits are accounted for as

before [21]: we introduce replicas a ¼ 1 . . .n, average
over the J‘m using Eq. (4), decouple the resulting two-�
coupling by Hubbard-Stratonovich transformation using a
ferromagnetic order parameter �að�Þ, and the four-�
coupling by the bilocal field Qabð�1;�2Þ [22] (the � are
Matsubara frequencies). The complete action is

S ¼ X
a

S0½�a; �a� þ T
X
a;�

J0ð�Þ
�
N

2
j�að�Þj2

��að��ÞXN
‘¼1

�a
‘ð�Þ

�
þ T2

2

X
a;b;�;�0

Kð�;�0Þ

�
�
N

2
jQabð�;�0Þj2 �Qabð��;��0Þ

� XN
‘¼1

�a
‘ð�Þ�b

‘ð�0Þ
�
: (9)

Now we perform the Gaussian integration over the �‘: the
resulting action has a prefactor ofN, and so can be replaced
by its saddle-point value. By time-translational invariance,
the saddle-point values of the fields can only have the
following frequency dependence

�að�Þ ¼ ð��;0=TÞc
Qabð�;�0Þ ¼ ð��þ�0;0=TÞ½�ð�Þ�ab þ ð��;0=TÞq�; (10)

and we take �a ¼ �. We have assumed replica symmetry
for the Edwards-Anderson order parameter q because our
interest will be limited here to T ¼ 0 where there is no
replica symmetry breaking [22]. Now the values of the
ferromagnetic moment c , the spin susceptibility �ð�Þ,
q, and � have to be determined by optimizing the free
energy. The latter is obtained by inserting Eq. (10) in
Eq. (9); after taking the replica limit n ! 0, we have the
free energy per site

F ¼J0ð0Þc 2

2
þT

4

X
�

Kð�;��Þj�ð�Þj2þ1

2
Kð0;0Þ�ð0Þq

þT

2

X
�

ln

�ð�2þ�Þ
�

�Kð�;��Þ�ð�Þ
�
� �

2�

�1

2

�
Kð0;0ÞqþJ20ð0Þc 2

�=��Kð0;0Þ�ð0Þ
�
: (11)
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Note that this free energy depends only upon J0ð0Þ and
Kð�;��Þ, as claimed earlier. Our results described in
Eq. (6) and Figs. 1–3 are derived from a set of coupled
saddle-point equations obtained from varying Eq. (11) with
respect to �ð�Þ, q, c , and � for every�. Subsequently, we
let T ! 0.

For the choices forKð�;��Þ and J0ð0Þ of Eq. (5), the rf
spectral response function of the atomic qubits plotted in
Figs. 2 and 3 is given by the expression

� Im½Qaaði� ! �þ i0þÞ�

¼ j!2
0 ��2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�2t4!2

0 � ð���2Þ2ð!2
0 ��2Þ2

q
8�t4!2

0

þ q2��ð�Þ: (12)

The first term is nonzero only for frequencies � so that
the expression underneath the square-root is positive. The
value of the Lagrange multiplier in the FMSR is pinned
to �FM ¼ �ðJ0ð0Þ þ Kð0; 0Þ=J0ð0ÞÞ. The value of the gap

in Fig. 2 is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ð�FM þ!2

0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�t2!0 þ ð�FM �!2

0Þ2
q

Þ
r

.

This expression equates to zero in the gapless QSG phase

shown in Fig. 3, where �QSG ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kð0; 0Þp

. This gap

vanishes logarithmically faster than (t2 � t2c) when ap-
proaching the QSG phase boundary due to the square-
root behavior of the spectral weight [21,31].

The ferromagnetic moment obtains as

c 2 ¼ J20ð0Þ � Kð0; 0Þ
J20ð0Þ

�
1�

Z 1

�1
d�

2�
�ð�Þ

���������¼�FM

�
; (13)

and c vanishes continuously at the FMSR-QSG phase

boundary (at which J0ð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kð0; 0Þp

) with exponent
	FM ¼ 0:5. As per the discussion above Eq. (7), the cor-
responding photon condensate haii vanishes with the same
exponent. Note that the Edwards-Anderson order parame-
ter q is continuous across this transition and in the QSG
phase given by

qQSG ¼ 1�
Z 1

�1
d�

2�
�ð�Þ

���������¼�QSG

: (14)

As expected, one obtains numerically 	QSG¼1:0¼2	FM.
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