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We show that the effective spin-spin interaction between three-level atoms confined in a multimode

optical cavity is long-ranged and sign changing, like the RKKY interaction; therefore, ensembles of such

atoms subject to frozen-in positional randomness can realize spin systems having disordered and

frustrated interactions. We argue that, whenever the atoms couple to sufficiently many cavity modes,

the cavity-mediated interactions give rise to a spin glass. In addition, we show that the quantum dynamics

of cavity-confined spin systems is that of a Bose-Hubbard model with strongly disordered hopping but no

on-site disorder; this model exhibits a random-singlet glass phase, absent in conventional optical-lattice

realizations. We briefly discuss experimental signatures of the realizable phases.
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Realizing models of magnetic phenomena and exploring
their phases has been a central objective in ultracold-
atomic physics since the advent of optical lattices [1].
Such models (e.g., the Hubbard and Heisenberg models)
have been of long-standing theoretical interest as they are
believed to offer minimal descriptions of strongly corre-
lated materials [2]. Unlike real materials, ultracold-atomic
systems offer the prospect of realizing the theoretical
models exactly; because many of the models are not solv-
able, it is hoped that ultracold-atomic realizations will shed
light on their properties. The central effort to realize mag-
netism, to date, has focused on the fermionic Hubbard
model [3]; however, its magnetic ordering temperature is
too low to be readily achievable in current experiments.
These difficulties have stimulated an interest in alternative
paths to quantum magnetism [4,5], of which the present
work is an example.

We introduce a scheme for realizing magnetism—in-
volving �-type three-level atoms [see Fig. 1(a)] trapped
in a multimode optical cavity—that differs from previous
schemes in an essential respect, viz., the range and struc-
ture of interactions. Whereas previous schemes have in-
volved contact or dipolar interactions [5], the spin-spin
interactions in our scheme, being mediated by cavity
modes, are both long-ranged (indeed, infinite-ranged for
a single-mode cavity) and oscillatory in sign. In these
respects, they resemble the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction [6], which underlies, e.g., the
physics of heavy-fermion materials [7] and metallic spin
glasses [8,9]. The present work is concerned chiefly with
the latter class of systems, and, in particular, with the fact
that long-range, sign-changing interactions between spins
facilitate the realization of various frustrated and bond-
disordered models. (Analogous realizations have also been
proposed, e.g., in photonic band-gap systems [10] and
Coulomb crystals [11].)

The elements of our scheme are �-type atoms (i.e.,
atoms with the level structure shown in Fig. 1) dressed
by a configuration of laser and microwave fields suggested
in Ref. [12]; the atoms are assumed to be tightly confined
near fixed, random positions inside the cavity.
(Alternatively, the spins might arise because of nitrogen-
vacancy centers in diamond [13], distributed randomly
inside a multimode cavity.) We show that the effective
spin Hamiltonian is a variant of that studied in
Refs. [9,14–16]. By adapting the results of Refs. [9,15],
we show that, depending on the number of spins per

δ

ωL

ωC

a) b) pump laser

trapping lasers
h

–
+

e
∆

FIG. 1 (color online). (a) Level structure of three-level �
atoms, dressed by a pump laser at frequency !L, cavity
mode(s) at frequency !C, and a microwave field represented
by h. The detuning from two-photon resonance, �, is assumed to
be much smaller than the detuning of laser and cavity photons
from the atomic transition, �. (b) Proposed experimental setup.
Atoms are tightly trapped by trapping lasers, which are far
detuned from the atomic transition, and pumped transversely.
Spins are self-organized as discussed in the text for a single-
mode cavity, with a sinusoidal mode function as depicted: spins
at even antinodes interact ferromagnetically with spins at other
even antinodes, but antiferromagnetically with spins at odd
antinodes. Spin-spin interactions are strongest for spins trapped
at antinodes; therefore, ordering is strongest at antinodes and
weakest at nodes.
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strongly-coupled cavity mode, the low-temperature phase
is either a spin glass or a superradiant phase [17–19]
(analogous to a cavity-mediated crystal [20,21]); we dis-
cuss how these phases can be distinguished experimentally.
In contrast with condensed-matter realizations, the systems
considered here allow one to access both regimes in the
same system, by changing the mirror spacing and thereby
tuning the number of active cavity modes [22]. We
note, moreover, that for quantum spins, the effective
Hamiltonian can be mapped onto a Bose-Hubbard model
possessing strictly off-diagonal disorder [23]. Unlike the
diagonally disordered Bose-Hubbard model [24,25], the
off-diagonally disordered version exhibits multiple distinct
insulating phases, including a Mott glass phase and a
random-singlet glass phase [23,26,27], neither of which
has been experimentally observed so far.

Model.—We consider �-type atoms whose lower levels
(which will be our two spin states, jþi and j�i) are
separated by a microwave transition whereas the excited
level, jei, is separated from both by an optical transition.
The j�i states are assumed to be tightly confined at the
intensity extrema of trapping lasers that are far detuned
from the j�i ! jei transition; i.e., the atomic positional
degrees of freedom are assumed to be frozen out. (Thus,
the physics considered here differs from that of mobile
spinful atoms [28–30].) Disorder can be introduced using
diffusers (see, e.g., Ref. [25]). The atoms are confined in an
optical cavity having multiple degenerate modes, at a
frequency red-detuned from the jþi ! jei transition by
�� 1 GHz; other modes are typically farther-detuned
(e.g., by �15 GHz for a 1 cm cavity). Additionally, the
atoms interact with a pump laser oriented transverse to the
cavity axis, red-detuned from the j�i ! jei transition by
�þ �, where � ’ 10 MHz is the detuning from two-
photon resonance. (Note that the aforementioned setup
generalizes to systems possessing manifolds of ground
and excited atomic states, rather than two ground states
and one excited state, provided that—as in dysprosium
[31]—the two manifolds have similar g-factors.) The mi-
crowave jþi $ j�i transition is driven at a weak Rabi
frequency that, as we shall see, acts as an effective mag-
netic field.

Under these conditions, the spin-spin interactions can be
understood as follows: an atom in the j�i state can scatter a
laser photon into a cavity mode, thus changing its state to
jþi; this virtual cavity photon, being � higher in energy
than laser photons, is reabsorbed into the laser after a time
�1=�. The reabsorption involves flipping the state of a jþi
atom (typically a different one from the initial atom) to
j�i. This entire process generates an effective interaction
of the form Mðxi;xjÞ�iþ�j�=ð�2�Þ between two atoms,

where xi is the position of the ith atom and M is a matrix
element (derived below) depending on the cavity mode(s).

We further assume that the cavity photon leakage rate
per mode, � � �, and also that the atomic-excited-state

decay rate, � � �. In this ‘‘dispersive’’ regime, the con-
servative virtual-excitation processes fall off as 1=� and
1=� respectively, whereas the dissipative processes fall off
as �=�2 and �=�2 respectively. As argued in Ref. [21], the
effect of dissipation in this regime can be understood in
terms of heating, and need not be explicitly included in the
Hamiltonian. Generally, dissipation does not change the
mean-field properties even beyond this regime [32]; we
shall revisit this issue in future work. (Note that, in the
presence of decay, a weak microwave field must be applied
to prevent the spin population from being pumped entirely
into the jþi state; however, this field is comparable in
strength to the decay processes, and thus much weaker,
for small �=�, than the interaction terms.) Thus, we ne-
glect, in this work, issues such as the nonequilibrium
growth of entanglement [12].
Hence, upon adiabatic elimination [21,33] of the state

jei, the HamiltonianH of the atom-light system takes the
form

H ¼Hatþ
X
�

!�a
y
�a�þ�

�

XN
�;i¼1

g�ðxiÞ�i�a
y
�þH:c:; (1)

where!� is the frequency of cavity mode �; a� destroys a
cavity photon; � is the strength (i.e., Rabi frequency) of
the pump laser; g�ðxiÞ describes the coupling to mode � at
the position xi of atom i; and the � operators are Pauli
matrices acting on the atomic ground-state manifold. One
can rewrite the coupling g�ðxiÞ as g��ðxiÞ, where g is an
overall coupling strength (assumed to be the same for all
strongly coupled modes) and ��ðxiÞ a normalized mode
profile. The terms in Hat ¼ P

iðhx�i
x þ hz�

i
zÞ represent

transitions that do not involve the cavity, and are due to
the jþi $ j�i microwave driving: hx is the microwave
Rabi frequency, hz is the detuning, and �i are the Pauli
matrices for atom i. In what follows we refer to these terms
as ‘‘fields.’’ Note that the model described above, while
similar in some ways to the multimode Dicke model [34],
differs from it in the crucial respect that, in the present
case, the different modes have distinct spatial profiles; it is
this feature, not present in the multimode Dicke model,
that enables frustration to be realized.
We now proceed to eliminate the cavity modes pertur-

batively, thus arriving at an effective model for the spins,
valid on time scales * 2�=�:

H ¼ Hat þ
X
�;i<j

j�ðxiÞj2
�2

g�ðxiÞg��ðxjÞ
�

�iþ�j� þ H:c: (2)

(Note that this result can also be derived from nonequilib-
rium field theory, as in the spinless case [21].)
Single-mode case.—In what follows we denote the ef-

fective spin-spin coupling as � � jg�j2=ð�2�Þ. Thus, e.g.,
for atoms in a single-mode cavity for which ��ðxÞ �
cosðkxÞ, the zero-field Hamiltonian is
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H1�mode¼1

2
�

�X
i

cosðkxiÞ�iþ
��X

j

cosðkxjÞ�j�
�
þH:c: (3)

Because the interaction term can be rewritten as �i � �j �
�i

x�
j
x þ �i

y�
j
y, the system possesses an Oð2Þ symmetry

(as the repumping field is negligible). The cavity-mediated
interaction is ferromagnetic for atoms � apart, but anti-
ferromagnetic for atoms �=2 apart; therefore, the low-
temperature ordered state involves all spins at even
antinodes aligned along some direction 	 on the equator
of the Bloch sphere defined by j�i, and all atoms at the odd
antinodes aligned along 	þ �. The interactions, though
disordered (as their magnitude is position-dependent), are
not frustrated in this case. Note that spin-ordering leads to a
macroscopic photon population in the cavity mode, as in
the self-organization of an atomic cloud [17,20,21,33]—
put differently, magnetism is a self-organization of atomic
spins rather than positions. (This can be seen, e.g., by
replacing the � operators in Eq. (1) by their expecta-
tion values.) In the driven, dissipative system (with hx,
� � 0) such macroscopic occupation corresponds to
superradiance.

Multimode case.—We now turn to multimode cavities,
in which the interactions do not factorize as in H1�mode.
The simplest case is the ring cavity, which supports two
degenerate modes ��ðxÞ � e�ikx. In this case the interac-
tion term takes the translation-invariant form

Hring ¼ ��
X
i<j

cos½kðxi � xjÞ��i � �j: (4)

Note that Eq. (4) is precisely Eq. (1) of Ref. [9], which
approximately describes the RKKY interaction in materi-
als (such as YxGd1�x) having spin susceptibilities peaked
at a single momentum. While this interaction leads to
frustration for Ising spins, it does not for XY spins; instead,
the ground state is a spin spiral of pitch � [9,16].

To realize frustration using XY spins, one must progress
to cavity geometries possessing many degenerate modes,
such as confocal and concentric cavities [22]. The general
Hamiltonian for these is:

Hmm ¼ ��
X
�;i�j

��ðxiÞ��ðxjÞ�i � �j: (5)

For XY spins, Eq. (5) closely resembles the Oð2Þ general-
izations [35,36] of the Hopfield neural-network model
[15,37]. The mapping to Cook’s model [35] is exact for
translation-invariant, traveling-wave cavity geometries
such as the ring and confocal cavities; however, the basic
features of these models (which are similar to one another)
are expected to extend quite generally to Hmm [9].

Associative memories, spin glasses, and self-
organization—The Hopfield and Cook models describe
associative memories, consisting of N neurons (i.e., spins
in the physical system) that collectively encode p ‘‘pat-
terns.’’ In general, p corresponds to the number of cavity

modes. The associative memory is said to function if,
starting with any configuration similar to a stored pattern,
the dynamics drives the configuration to the stored pattern,
i.e., if a partially self-organized initial configuration at
T ¼ 0 becomes fully self-organized under the dynamics
(this point is discussed further in Ref. [38]). In the Hopfield
and Cook models [15,35,37], this is the case (as N ! 1)
for small p=Nð& 0:05Þ, e.g., in the single-mode cavity. For
p=N * 0:05, metastable states proliferate, and the system
becomes a spin glass; the spin glass differs from the self-
organized phase in that the ground-state atomic configura-
tion does not globally emit superradiantly into any particu-
lar cavity mode; nevertheless, it is a distinct phase from
the high-temperature paramagnetic phase [8]. A finite-
temperature phase transition between the two is known to
exist in the case that p=N ! 1, i.e., the Sherrington-
Kirkpatrick model [8,15]. These considerations lead to
the global phase diagram shown in Fig. 2.
Tuning and detection.—Both the associative memory

and the spin glass are low-temperature phases. The former
is stable when kBT & @�N. As is standard in ultracold
atom experiments, the temperature is determined (in the
� � �, � � � limit) by the system’s initial entropy;
however, � increases with pump laser intensity, and can
be tuned across the transition. The spin-ordering threshold
is similar to that for self-organization, and is achievable,
even for relatively large �, for reasonably long experimen-
tal lifetimes [19–21]. The effective number of modes
coupling to the atoms can be decreased by adjusting the
length of the cavity away from the confocal/concentric
limit; as � � 1=�, only modes having sufficiently small �
couple strongly to the atoms. The spin-glass transition
temperature Tg in Hopfield-type models is comparable to

the single-mode ordering temperature [15].
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FIG. 2. Phase diagram of frustrated spin systems in cavities, as
a function of the temperature (vertical axis) and ratio of number
of modes, p, to number of atoms, N. The thresholds for self-
organization as T ! 0 and as p=N ! 0 were computed in
Ref. [35], and might have geometry-dependent corrections; the
boundaries connecting them are schematic. Inset: schematic
quantum phase diagram for an off-diagonally disordered XY
model, as a function of hopping (i.e., cavity-mediated interaction
strength) and spin imbalance, showing SF (‘‘superfluid’’, i.e.,
magnetically ordered), BG (Bose glass), and RSG (random-
singlet glass) phases discussed in the text.
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The self-organized phase should be detectable via the
light emitted from the cavity, but the spin-glass phase is
not, as it does not exhibit superradiance. One straightfor-
ward way to detect this phase is through its slow relaxa-
tional dynamics: a possible protocol involves initializing
all spins in a certain region in the jþi state via a local spin
addressing protocol [39], and measuring the spin relaxation
timescale (observed, e.g., via phase-contrast imaging [40])
as a function of pump intensity. A feature common to both
the superradiant and spin-glass phases at low temperatures
is the presence of a large number of low-energy excita-
tions; these reveal themselves in condensed-matter systems
via the heat capacity. In the cavity QED setting, such
excitations can be detected, e.g., via two-photon spectros-
copy [41]. Further possibilities for distinguishing the two
low-temperature phases via their response functions are
considered in Ref. [42].

Quantum regime.—Thus far, we have focused on the
classical spin physics realizable using cavity-mediated
interactions. We now turn to the quantum regime, in which
Eq. (5) can be mapped [43] onto a Bose-Hubbard model in
the limit U=t ! 1, via the transformation �þ ! by:

HBH ¼ �w
X
ij

tijðbyi bj þ H:c:Þ þ

X
i

byi bi: (6)

According to this mapping, a jþi state corresponds to the
presence of a b boson whereas a j�i state corresponds to
the absence of a b boson; the chemical potential 
 is
determined in the standard way from the number of bosons
(i.e., jþi atoms). More generally, an n-state atom maps
onto a Bose-Hubbard model with a maximum occupation
per site of n� 1:

Hn�level ¼ �w
X
ij

tijðbyi bj þ H:c:Þ þU
X
i

ðni � �nÞ2; (7)

where the ‘‘interaction’’ term U can arise, e.g., because of
the quadratic Zeeman shift. Note that, in this bosonic
terminology, a ‘‘superfluid’’ state corresponds to a finite
expectation value of �� (i.e., to in-plane magnetic order-
ing). Thus, it is a superfluid of spins and not of the atoms,
which are frozen in place.

A crucial difference between cavity-based realizations
of the Bose-Hubbard model and optical-lattice ones [25] is
that, in the cavity-based setting, strongly disordered hop-
ping amplitudes are natural (hopping amplitudes being
determined by the oscillatory cavity mode functions)
even in the absence of on-site disorder (as both spin states
interact identically with the trapping lasers). This is chal-
lenging to achieve in optical lattices [25], as varying the
hopping amplitude via the lattice depth inevitably leads to
on-site disorder. The phase structure of the disordered
Bose-Hubbard model is known to be richer in the absence
of chemical potential disorder, especially in one dimension
[23]: the off-diagonally disordered model exhibits a Mott
glass phase, as well as a random-singlet glass phase [26,27]
(see Fig. 2). These phases are not present in models having

on-site disorder, and are thus not directly realizable in
optical lattices, but are realizable in the cavity-based
setting.
A simple one-dimensional geometry that realizes the

model of Ref. [23] involves a chain of atoms trapped
perpendicular to the cavity axis. The cavity modes are
Hermite-Gaussian along this direction, which we label y;
thus, the nth mode has a profile of the Hermite-Gaussian
Hnðy=LÞ expð�y2=L2Þ, where L is the waist of the TEM00

mode. For good confocal cavities n� 10–100; a more
scalable geometry involves atoms trapped along the cavity
axis. An atom at position y couples most strongly to modes
with ‘‘classical turning points’’ near y; these modes have
large amplitudes within a distance L from the turning
point, and either decay or oscillate rapidly beyond this
distance. Thus the interaction range is given by L and (in
particular) is finite, and the analysis of Ref. [23] applies.
For the case of a � atom having equal spin populations,
one can realize the random-singlet glass, which possesses
long-range spin-singlet correlations [26,27]. (In order to
realize the Mott glass, one could use, e.g., an atom pos-
sessing three ground states.) The three realizable glassy
phases can be distinguished, e.g., via internal-state depen-
dent transport or compressibility measurements [25].
S. G. is indebted to Ehud Altman for helpful discussions.
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