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We propose a method for simulating ð2þ 1ÞD compact lattice quantum-electrodynamics, using ultra-

cold atoms in optical lattices. In our model local Bose-Einstein condensates’ (BECs) phases correspond to

the electromagnetic vector potential, and the local number operators represent the conjugate electric field.

The well-known gauge-invariant Kogut-Susskind Hamiltonian is obtained as an effective low-energy

theory. The field is then coupled to external static charges. We show that in the strong coupling limit this

gives rise to ‘‘electric flux tubes’’ and to confinement. This can be observed by measuring the local density

deviations of the BECs, and is expected to hold even, to some extent, outside the perturbative calculable

regime.
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Free quarks are not found in nature. This is due to the
mechanism of confinement. A lot of theoretical progress in
this area has been achieved—either in the lattice Euclidean
approach by Wilson [1], in nonperturbative methods by
Polyakov [2], or using the lattice Hamiltonian formalism,
by Kogut and Susskind [3,4].

Although gauge theories can be latticized either in a
compact (nonlinear) or noncompact (linear) manner, the
compactness is essential to the confinement mechanism
[5]. It has been shown that in an Abelian 3þ 1 compact
lattice gauge theory, a phase transition is supposed to take
place between two phases—the Coulomb phase for small
couplings, which exhibits the ‘‘regular’’ VðRÞ / 1=R static
potential between two R-separated static charges, and the
confining phase, for which the static potential is linear in
the distance between the charges—VðRÞ / R, for large
values of the coupling constant [4]. (Non-Abelian theories,
on the other hand, confine for all values of the coupling
constant.) However, for an Abelian 2þ 1 compact lattice
gauge theory, confinement was shown to take place for all
the values of the coupling constant, due to nonperturbative
effects of instantons [2,5–7]. Considering thermal effects
as well, even in 2þ 1 dimensions a phase transition to a
Coulomb phase exists for T > 0 [8,9].

The mechanism responsible for confinement is believed
to produce an ‘‘electric flux tube,’’ connecting two static
charges in the confining phase, which is hard to measure
directly. It requires measuring the force and/or potential
between two static charges. If one wishes to observe the
phase transition, the coupling constant has to be varied,
which poses another difficulty. A quantum simulation of
such a model could allow a direct test of the confinement
mechanism and the phase transitions.

Quantum gases of ultracold atoms, implemented in opti-
cal lattices [10], provide models with highly controllable
parameters and offer a natural playground for the simula-
tions of such models. Quantum simulation approaches of

various kinds and aspects of compact U(1) pure gauge
theory, in cold gases and other systems, have been proposed
by several authors: In [11], an effective theory of U(1) spin
liquid in pyrochlore was discussed; in [12], using a mo-
lecular state in optical lattices, an effective theory of ring
exchangewas derived, and it is, in the limit of no hopping, a
U(1) lattice gauge theory, with a Coulomb phase; in [13],
emergence of ‘‘artificial photons’’ and a Coulomb phase in
an effective theory based on dipolar bosons in an optical
lattice were shown; and in [14], a possibility to simulate a
spin U(1) pure gauge theory as a low-energy theory with a
system of Rydberg atoms was presented.
In this Letter, we suggest a method for simulating com-

pact QED with cold atoms in optical lattices, which should
enable a direct observation of electric flux tubes that
emerge in the mechanism of confinement. In our model,
the vector potential and its conjugate electric field are
represented by the local condensate phase operators and
their conjugate number operators. These observables
‘‘live’’ on the links of a two- or three-dimensional optical
lattice, and hence each link of the lattice is here represented
by a separate Bose-Einstein condensate (BEC). In order to
obtain the QED Hamiltonian, one has to generate certain
two- and four-body interactions between the condensates,
that manifest local gauge invariance. In order to avoid the
hopping processes of an ordinary Bose-Hubbard model, we
introduce a four-species two-dimensional setup (Fig. 1).
The condensates are located on the links of a lattice—each
species on a different link—and overlap at the lattice’s
vertices. Hence, condensates of the same type are spatially
separated, as depicted in Fig. 1, causing the attenuation of
hopping processes. Next we use Raman transitions and
two atom scattering processes in order to create special
‘‘diagonal’’ hopping and nonlinear interactions. As we
show, in this new setup a certain choice of parameters
gives rise to gauge invariance in the low-energy sector;
hence compact QED emerges as an effective theory.
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To study the effect of confinement within this setup, we
can introduce two spatially separated effective ‘‘charges’’
by creating local deformations of the trapping potential at
the position of the charges at the relevant vertices. We then
expect that the local atomic densities, within the QED
parameter regime, should manifest the effect of confine-
ment by the appearance of a fluxlike tube of alternating
atomic density deviations along the line connecting the
charges (Fig. 2), while such a flux tube will not appear
outside the QED parameters regime. Other possible impli-
cations of our model will be briefly discussed in the
summary.

We begin with a system of condensates described by the
Hamiltonian H ¼ R

d3x
P

4
i;j¼1 H ijðxÞ, where

H ijðxÞ ¼ �y
i ðxÞð�ijðH i

0ðxÞ þ VMðxÞÞþ�ijÞ�jðxÞ
þ gij

2
�y

i ðxÞ�y
j ðxÞ�jðxÞ�iðxÞ: (1)

�ij is Kronecker’s delta, gij are the s-wave scattering

coefficients, and �ij are Rabi frequencies. It contains the

following parts. The ‘‘free’’ Hamiltonian of each species:

H i
0ðxÞ ¼ � r2

2m þ ViðxÞ, where ViðxÞ is the optical lattice

trapping potential of the species i; the scattering terms, set
by the coupling constants gij (neglecting the three- and

four-body interactions): (i) self-scattering terms, gii � g1,
(ii) two-species scattering terms, g12 ¼ g21 ¼ g34 ¼
g43 � g2 along straight lines, and along the diagonals,
g13 ¼ g31 ¼ g14 ¼ g41 ¼ g23 ¼ g32 ¼ g24 ¼ g42 � g3
(all the other gij’s are zero); an ‘‘external charges’’ simu-

lating potential, which deforms the lattice potential at the
vertices and is approximated by a very localized potential,
VMðxÞ � P

m;n�m;n�ðx� xm;nÞ, where �m;n are constants

(whose value and sign are related to the external charges
and will be determined in the sequel) and xm;n is the

position of the (m; n) vertex. The laser generated Rabi
terms �13 ¼ �31 ¼ �14 ¼ �41 ¼ �23 ¼ �32 ¼ �24 ¼
�42 � �0

0 couple the condensates to each other in a spe-

cial, diagonal manner, as depicted in Fig. 1. (All the other
�ij’s are zero.) Since the minima of the same species are

far enough apart, the hopping effects are solely controlled
by the latter Rabi terms. Experimentally, our scheme can
be implemented by using holographic masks techniques
[15] in order to generate the required optical lattice and
using optical Feshbach resonances in order to control the
coupling strengths gij [16–18]. Raman transitions can be

used to control the coefficients �ij of the Rabi terms.

The second quantization wave functions of the conden-
sates (taking into account only the lowest band excitations)
are �1;2 ¼

P
m;nam;n�m;nðxÞ, �3;4 ¼

P
m;nbm;n�m;nðxÞ,

where am;n, bm;n are single-mode annihilation operators,

annihilating one particle in the ground state of the corre-
sponding link (minimum). Note that because of the lattice’s
structure, not all the values (m; n) are included in the
wave function of each species. We assume that the local

Wannier functions [10] respect the symmetries �m;nðxÞ ¼
�ðx� x1;2

m;nÞ,�m;nðxÞ ¼ �ðx� x3;4
m;nÞ ¼ �ðRxÞ, whereR is

the appropriate rotation operator, and that they are chosen
to be real [19].
Plugging the wave functions into the Hamiltonian (1),

one gets, using the above assumptions, that the only non-
negligible contributions are 2�þ� � g1

2

R
d3xj�ðx�

x0Þj4, V0 �
R
d3x��ðx� x0Þ½� r2

2m þ ViðxÞ��ðx� x0Þ,
V2 �

R
d3xj�ðx� x0Þj2j�ðx� x1Þj2, V3 �

R
d3xj�ðx�

x0Þj2j�ðx� x2Þj2, �m;n � � 1
2� �m;nj�ðxm;nÞj2, and �0 �

�0
0

R
d3x��ðx� x0Þ�ðx� x2Þ (here the reality of the

Wannier functions is employed). x0 is the position of an
arbitrary minimum of the potential (due to the symme-
tries), x1 is an adjacent minimum in the same direction
(separated by a single lattice spacing), and x2 is an adjacent
minimum in the orthogonal direction (rotated). In the
following we assume that g2; g3 satisfy the relation
g2V2 ¼ g3V3 ¼ 2�.
Let Nk

m;n be the local number operators, emanating from

the vertex (m; n): for horizontal (x̂) links k ¼ 1 and for
vertical (ŷ) links k ¼ 2.NT ¼ P

m;n;kN
k
m;n, the total number

FIG. 2 (color online). An example of the charge and flux
configurations, for R ¼ 2. The different colors represent the
condensate species. The upper couple of charges are with
QED quantum numbers, and the lower couple with BEC local
number deviations quantum numbers. Such a flux tube can be
embedded, in the absence of other charges, in a lattice whose
other links carry E ¼ 0.
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FIG. 1 (color online). Left: Structure of the lattice. The differ-
ent condensate species are colored in four colors; the colored
boxes represent the links (condensates), and there the localized
wave functions are concentrated. At the vertex (symbolized by a
cube) the wave functions of the neighboring links overlap and
these are the only overlap integrals which are not negligible.
Right: A close-up picture of a single vertex, showing the various
interaction parts of the Hamiltonian—scattering and hopping.
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of particles, is a constant of motion. We choose a subspace
by fixing NT ¼ N LN0, where N L is the number of links
and N0 � 1. Defining Mm;n ¼ 4N0 þ�m;n, Gm;n ¼
N1

m;n þ N2
m;n þ N1

m�1;n þ N2
m;n�1 �Mm;n, after some alge-

bra, one obtains the Hamiltonian H0 � H �HR ¼
�
P

m;nG
2
m;n þ�

P
m;n;kðNk

m;nÞ2. The nearest-neighbor hop-

ping part, which results here from the Rabi terms, can be

written as HR � �0

P
m;nðam;nb

y
m;n þ am;nb

y
mþ1;n þ

am;nþ1b
y
m;n þ am;nþ1b

y
mþ1;n þ H:c:Þ.

Gauss’s law.—We wish to obtain a gauge-invariant the-
ory, and hence we would like to constrain Gauss’s law on
the system. This is satisfied in the QED regime: � � �
and � � �0, in which HR can be treated as a small
perturbation. Let us first find the ground state of H0.
After expanding the number operator on each link around
N0, N

k
m;n ¼ N0 þ �k

m;n, one obtains at each vertex Gm;n ¼
�1
m;n þ �2

m;n þ �1
m�1;n þ �2

m;n�1 ��m;n. Within the sub-

space of a constant, conserved NT ,
P

m;n;k�
k
m;n ¼ 0.

Neglecting constants of motion, one can rewrite the
Hamiltonian in terms of �k

m;n: H0 ¼ �
P

m;nG
2
m;n þ

�
P

m;n;kð�k
m;nÞ2 � HG þHE. � � �, and hence one

would like to minimize HG first. Thus we get that in the
ground state the sum of �k

m;n’s around each vertex equals

the �m;n of the vertex: This imposes a modified Gauss’s

law (sum instead of discrete divergence), and hence the
�m;n’s must be integers (positive, zero, or negative)—this

can be set by adjusting the values of the �m;n’s in VMðxÞ.
Next, to minimize the entire H0 (including HE) we would
like to choose the lowest �k

m;n’s which satisfy this

constraint.
Define the sublattices A ¼ fðm; nÞ :mþ n ¼ eveng,

B ¼ fðm; nÞ :mþ n ¼ oddg. Note that for states that re-
spect Gauss’s law (for which Gm;njc i ¼ 0), which will

later be the physically interesting states, the sum of �m;n’s

of each sublattice must be zero. This follows from adding
the Gm;n’s of each sublattice, taking into account that the

total particle number deviation is zero.
Quantum rotor approximation.—If we set that at each

vertex j�m;nj � N0, we get that on each link, in the ground

state of H0, within our subspace, jh�k
m;nij � N0, and thus,

after taking into account the perturbative corrections, one

obtains that on each link �k
m;n � hð�k

m;nÞ2i1=2 � N0. Note

that �k
m;n � �N0ðN0�1Þ

�0
(because �0

� � N0), and hence the

two conditions of [20] are fulfilled and the Hamiltonian can
be approximated as a quantum rotor Hamiltonian. HG;HE

remain the same because they are already written in the
number deviations’ notation. Because of the phase-number

relation of the condensates, ½Ni
m;n; �

j
m0;n0 � ¼ i�mm0�nn0�ij,

½Ni
m;n; e

�i�im;n� ¼ �e�i�im;n , and therefore we can define

phase-only lowering and raising operators, ~am;n ¼ ei�
1
m;n ,

~aym;n ¼ e�i�1m;n , ~bm;n ¼ ei�
2
m;n , ~bym;n ¼ e�i�2m;n , which operate

on the local number deviations: ~am;nj�1
m;ni ¼ j�1

m;n � 1i,
etc., and since N0 � 1,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0ðN0 þ 1Þp 	 N0. Thus one

gets HR¼�
P

m;nð~am;n
~bym;nþ ~am;n

~bymþ1;nþ ~am;nþ1
~bym;nþ

~am;nþ1
~bymþ1;nþH:c:Þ, where � ¼ �0N0.

Effective Hamiltonian.—Let us look again at the eigen-
states and eigenvalues ofHG. Since ½HG;HE� ¼ 0, the two
Hamiltonians can be mutually diagonlized. The eigenstates
of HE are number states, and we shall use this basis to
diagonalize HG as well. Since � � �;�, the Gauss
Hamiltonian HG is much stronger than the other two, and
therefore one can obtain an effective low-energy theory
perturbatively [21]. It is physically reasonable to derive an
effective Hamiltonian by projecting to the ground state
manifold of HG. Let us denote this manifold by M: M ¼
fjM�i :HGjM�i ¼ 0g. One can see that it is the physical
subspace of states which respects Gauss’s law. The pertur-
bative expansion to second order leads to Heff ¼ HE þ
HB, where HB¼�2�2

�

P
m;nð~aym;nþ1

~bm;n~a
y
m;n

~bmþ1;nþH:c:Þ
is the desired gauge-invariant four-body plaquette
interaction.
Compact QED analogy.—We next relate this model to

compact QED and discuss the implications. First, let us
switch to QED-like variables. In order to do so, we
perform the transformation Ek

m;n � ð�1Þmþn�k
m;n, Qm;n �

ð�1Þmþn�m;n, and �km;n ! ð�1Þmþn�km;n. Because of the

transformation of the phases of links emanating from sub-
lattice B vertices, these links’ raising and lowering opera-
tors have to be swapped.
This transforms HE, which can be identified as the

‘‘electric Hamiltonian,’’ to HE ¼ �
P

m;n;kðEk
m;nÞ2,

and HB ¼ � 2�2

�

P
m;nð~aym;n~am;nþ1

~bymþ1;n
~bm;n þ H:c:Þ ¼

� 4�2

�

P
m;n cosð�1m;n þ �2mþ1;n � �1m;nþ1 � �2m;nÞ is the

magnetic part of the compact QED Hamiltonian (the co-
sine’s argument is the discrete curl of �m;n, which is the

magnetic field). Thus we obtained an effective low-energy
theory whose Hamiltonian is the compact QED
Hamiltonian, constrained with Gauss’s law (which is the
low-energy constraint):

Gm;njc i ¼ ð�1ÞmþnðdivEm;n �Qm;nÞjc i ¼ 0: (2)

Confinement of external static charges.—Define a new

finite energy scale, U0 ¼ 2
g2
� ¼ 4�2g2

� , and rescale the

Hamiltonian to

�H � Heff=U0 ¼ g2

2

X

m;n;k

ðEk
m;nÞ2

� 1

g2
X

m;n

cosð�1m;n þ �2mþ1;n � �1m;nþ1 � �2m;nÞ; (3)

which is the well-known Kogut-Susskind Hamiltonian for
an Abelian lattice gauge theory [3,4]. From the definition

of U, one gets g4 ¼ ��
2�2 . This Hamiltonian has two limits:

(i) The strong coupling limit, g � 1, or �
� � �

� . In this

limit, we can treat HB as a perturbation to HE. (ii) The

weak coupling limit, g � 1, or �
� � �

� . In this limit, we

can treat HE as a perturbation to HB. In a 3þ 1 theory, the
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strong coupling limit is within the confining phase and the
weak coupling limit is within the Coulomb phase, and a
phase transition is expected in between [1–5]. In a 2þ 1
theory, there is no phase transition and confinement is
expected to occur for all g > 0 [5,7].

The external charges are limited by the restrictions
imposed by the constraint

P
ðm;nÞ2A�m;n ¼ 0,P

ðm;nÞ2B�m;n ¼ 0. Subtracting the second constraint

from the first, one gets
P

m;nQm;n ¼ Qtot ¼ 0. Thus, the
total charge has to be zero. If we add these constraints, we
get another constraint,

P
m;n�m;n ¼ 0. This constraint does

not seem to have a QED analogy, but it has to be satisfied in
our model.

Consider the case of a system with two unit external
charges, in the strong coupling limit. Thus we seek for the
ground state configurations of HE and treat HB as a pertur-
bation. These charges must be of opposite signs, in order to
satisfy the charge restrictions. For simplicity, we assume that
the charges are fixed at the vertices (m; n) and (mþ R; n).
If R ¼ 1, the charges are fixed at two vertices of different
sublattices, and hence have to have the same sign in terms of
�m;n. This, however, does not satisfy the charge restrictions,

and one has to add more charges to the system. This is true,
in fact, for any odd R. Therefore, we shall consider only the
case of an even R, for two charges in the system.

Denote jRi as the state of two such external charges,
Qm0;n0 ¼ 1,Qm0þR;n0 ¼ �1. In the strong coupling limit, it

can be written as a perturbative series, whose zeroth order

term is jR0i ¼ Q
m0
m<m0þR~a

y
m;njf0gi. This corresponds to

a flux tube from a positive charge to a negative one. Thus,
in the strong limit, we get, indeed, the expected strong
coupling linear behavior of the energy,

�EðRÞ � 1

U0

EðRÞ ¼ g2

2
RþOðg�6Þ: (4)

The effect can then be observed by measuring the local
density deviations �k

m;n, which are expected, in the leading

order, to have a magnitude 1 and alternating signs between
the two charges. An example for R ¼ 2 can be seen in
Fig. 2. When R is too large, the energy of HG is smaller
than the energy of such a flux tube, and then the low-energy
theory breaks, and a flux tube is no longer the state of
minimal energy. The low-energy picture holds as long as
the flux tube length satisfies R � �=�.

Outside the strong coupling regime, such perturbative
calculations are no longer valid. However, in 2þ 1 dimen-
sions the confinement holds for all values of g. Hence, the
effect should be seen experimentally even slightly outside
the strong coupling limit, although not in the weak limit (in
order to fit with the quantum rotor approximation).

It may also be possible to experimentally observe the
effect of a finite temperature, T > 0, on the model, includ-
ing a phase transition.

Extensions of the model.—In this Letter, we have shown
a method to simulate compact QED using BECs in optical

lattices, as a way to observe charge confinement. The
suggested model can be extended in several ways. More
realistic, nonperiodic boundary conditions can be imposed
(e.g., no charges on the boundary). Using additional con-
densates (of new species), a 3þ 1 simulation could be
achieved. Interestingly, a dynamical charge which is mini-
mally coupled to the field can be implemented using
another condensate species. This is equivalent to a special
case of the model of Fradkin and Shenker [22], in which a
Higgs field with a ‘‘frozen’’ radius is coupled to a U(1)
gauge field [23].
To conclude, we hope that this model can serve as one of

the building blocks of the bridge into the world of dynamic
quantum gauge field theories simulations.
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