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We explore a method for laser cooling and optical detection of excitations in a room temperature LC

electrical circuit. Our approach uses a nanomechanical oscillator as a transducer between optical and

electronic excitations. An experimentally feasible system with the oscillator capacitively coupled to the

LC and at the same time interacting with light via an optomechanical force is shown to provide strong

electromechanical coupling. Conditions for improved sensitivity and quantum limited readout of electrical

signals with such an ‘‘optical loud speaker’’ are outlined.
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Cooling plays an essential role in most areas of physics,
in part because it reduces detrimental thermal fluctuations.
For sensing application, where thermal fluctuations may
hide the small signals one is trying to measure, strong
coupling of mechanical and electrical oscillators to sys-
tems in a pure quantum state, such as light or polarized
atomic ensembles, opens up new possibilities for quantum
sensing of fields and forces [1]. This in principle allows for
enhanced sensitivity of the oscillators, where readout of
their state is limited only by quantum fluctuations. In
recent years, dramatic advances in optomechanical cou-
pling and cooling of high quality-factor (Q) mechanical
systems have been made [2–7]. Similarly, cooling of elec-
trical circuits have also been considered [8] using an
electro-optical coupling [9].

In this Letter, we propose to extend laser cooling of
mechanical objects to electrical circuits. By strongly cou-
pling a high-Q inductor-capacitor resonator (LC) to a near-
resonant nanomechanical membrane [10,11] in the radio
frequency (rf) domain, the electrical circuit can be effec-
tively cooled by the cold mechanical system. Since such
electrical circuits are used in a wide variety of settings, the
reduction of thermal fluctuations in these systems will
likely find numerous applications. We show that the cool-
ing techniques explored here allow for optical readout of
electrical signals in the circuit. Since light fields are rou-
tinely measured with quantum limited precision, this al-
lows for high sensitivity broadband detection of weak
electric signals. We analyze the possible gain in sensitivity
and bandwidth obtainable using this method. Moreover,
light and atomic ensembles can behave as oscillators with a
negative mass and thus provide the means to measure fields
and forces beyond the standard quantum limit using the
power of entanglement [8,12–14] which could improve the
sensitivity even further. Importantly, the strong coupling
considered here can be implemented with room tempera-
ture setups, which is a major asset of our work. It can,
however, be extended to cryogenic setups where it would

provide a versatile interface for quantum information,
allowing for the reliable transfer of quantum states from
rf to optical domains and back [15,16]. The key idea in this
work is to achieve strong coupling between a nanomechan-
ical membrane and a high-Q LC circuit, and then observe
the electrical excitations via optomechanical coupling be-
tween the membrane and a high-Q optical cavity. Our
suggested method is insertion of the membrane into the
fringing field of a capacitor [17], as shown in Fig. 1, such
that the capacitance depends upon the displacement of the
membrane. We demonstrate that for reasonable component
parameters, when combined with a voltage bias and an
inductive component to make a resonant electrical circuit
near the frequency of a mechanical resonance !m, the
coupling g between rf photons and the membrane phonons
can become sufficiently large to induce normal mode
splitting [18], where the resonant response of the system
comprises combined electromechancial excitations.
A model Hamiltonian describing the coupled electrome-

chanical system (Fig. 1) in the limit of well separated,
high-Q resonant electrical and mechanical modes is
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FIG. 1 (color online). (Left) Schematic of a Fabry-Perot cavity
with a nanomechanical membrane inserted in the waist of the
cavity; the membrane, in turn, is part of a parametric capacitor.
(Right) Equivalent circuit with a dc voltage bias describing the
coupled electromechanical system.
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ffiffiffiffiffiffiffiffiffiffiffiffi
2L!0

p
, x0 ¼ 1=
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. The flux� ¼ Ldq=dt and the membrane momen-
tum pm ¼ mdxm=dt are the canonical momenta conjugate
to the charge q and position xm. When the two modes are
brought into resonance !m ¼ !0 ¼ !, the natural canoni-
cal variables become normal mode solutions Y�; P� with

xm ¼ ðYþ þ Y�Þ=
ffiffiffiffiffiffiffi
2m

p
; q ¼ ðYþ � Y�Þ=
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p
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p
, with frequen-

cies !� ¼ !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g=!

p
for g < ! as considered below.

This coupled-mode system could be inserted into an
optical cavity (Fig. 1), whose mode couples to the mem-
brane position xm via radiation pressure [10]. Both normal
modes interact with the cavity mode as xm / Yþ þ Y�;
thus, radiation pressure-based detection can be applied
independently to each normal mode when the cavity line-
width � is narrow enough to resolve the normal mode
splitting !þ �!�. Alternatively, both normal modes
can be observed simultaneously when j!�j> �>!þ �
!�. In both cases the optical system can also cool the
combined electromechanical system. In essence this cool-
ing is achieved because the membrane-cavity system acts
as a transducer up-converting excitations in the LC circuits
to optical frequencies. This means that the LC circuit will
equilibrate with the optical modes which are in the quan-
tum mechanical ground state even at room temperature. At
the same time the interface between rf excitations in the
LC circuits and optical photons also allows for detection of
rf-electric signals by optical measurement. Since optical
measurement can be quantum noise limited, this opens up
new possibilities for detection of weak electrical signals, as
we outline below.

Capacitor.—We provide a specific design which admits
a strong coupling of a nanomechanical resonator to a LC
circuit and simultaneously admits optical coupling (Fig. 1).
Specifically, we envision a parallel plate capacitor of area
A where we replace one of the plates by a set of wires of
thickness t, width r, and separated by a distance d; see
Fig. 2(a). In order to have an interaction with light we
introduce a hole in the capacitor to allow for laser beams to
get through (not shown). Below we are mainly interested in
relative changes of the capacitance, and this hole is of
minor importance. A dielectric membrane of thickness h
is inserted into the capacitor. We assume the membrane to
be much larger than the capacitor such that the position of
the membrane is given a single number xm describing the
distance from the top of the wires. The replacement of one
of the capacitor plates by the set of wires creates a spatial
inhomogeneity of the electric field, which attracts the
membrane towards the wires when the capacitor is
charged. At the same time this inhomogeneity also means
that the capacitance CðxmÞ will depend on xm. Expanding
the capacitance around the equilibrium position gives rise

to a LC-membrane coupling / xmq
2. This is analogous to

the radiation pressure coupling that occurs in the optical

domain, i.e., a �ð2Þ-type nonlinearity. As such, we can
enhance the coupling strength by providing a classical
displacement of the LC circuit’s charge, with either a dc
or an ac voltage bias V providing an offset charge Q0. For
simplicity we restrict ourselves to the case of a dc voltage,
though generalization to the ac case is a simple extension
of these ideas and allows us to frequency match the LC and
mechanical systems. The coupling between the membrane
position and the charge fluctuations around the equilibrium
q̂ ¼ q�Q0 is then / xmQ0q̂ and is enhanced by the
large chargeQ0 induced on the capacitor, in direct analogy
to the similar effect for cavity optomechanics. The
full Hamiltonian including electrical and mechanical
contributions is

H ¼ �2

2L
þ p2

m

2m
þm!2

mðxm � xeÞ2
2

þ q2

2CðxmÞ � qV: (2)

Here xe is the equilibrium membrane position at V ¼ 0.
The fixed point of the classical charge Q0 at a given bias
voltage and the equilibrium displacement X0 are then
found from @qHjQ0;X0

¼ @xmHjQ0;X0
¼ 0, which yields

FIG. 2 (color online). Coupling of capacitor and membrane.
(a) Schematic of the considered setup (left). A capacitor is made
of a plate of area A separated from a set of wires by a distanceD.
The wires have thickness t and width r and are separated by a
distance d. A membrane of thickness h is separated from the
wires by a distance xm. To find the capacitance we perform finite
element method simulations over a cross section of the
capacitor (right). The gray scale indicates the simulated electric
potential with r ¼ D=4, d ¼ 3D=4, t ¼ D=4, h ¼ D=20, and
� ¼ 7:6. (b) Ratio of capacitance with the membrane to a
parallel plate geometry without membrane, c (full curve, left
axis), and characteristic length�� ¼ C=ðdC=dxÞ (dashed curve,
right axis) for the same parameters as in (a).
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Q0 ¼ CðX0ÞV; X0 ¼ xe � Q2
0

CðX0Þ
1

!m

x20
�
:

Here we have introduced a characteristic length scale �
defined by ��1 ¼ �C�1@C=@xmjX0

, which describes the

relative change in the capacitance at the new equilibrium
position X0.

Around these classical values, we consider the remain-
ing quantum fluctuations q̂; x̂. We change to annihilation

and creation operators âðb̂Þ for the membrane (LC), and
find a Hamiltonian

H ¼ !mâ
yâþ!0b̂

yb̂þ g

2
ðâþ âyÞðb̂þ b̂yÞ; (3)

with g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
!m!0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxe � X0Þ=2�
p

. This corresponds to the

model Hamiltonian examined in the beginning. Assuming
a constant value of @C=@xm from xe to X0, the coupling

constant can be expressed in a more intuitive form g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
!m!0

p ffiffiffiffiffiffi
�C
2C

q
, i.e., through the capacitance change �C

caused by the displacement of the membrane due to the
applied voltage V. The solution is a stable point under the
condition g <

ffiffiffiffiffiffiffiffiffiffiffiffiffi
!0!m

p
. We have here neglected several

higher order nonlinear corrections arising from the position
dependence of the capacitance, which are negligible for
the parameters considered below. We have also ignored a
small shift in the resonance frequency, which is of minor
interest here.

To obtain quantitative estimates of the feasible coupling
constant, we assume the plate electrode to be much larger
than the separation of the plate and transverse dimensions

of the wires
ffiffiffiffi
A

p � d;D; r. We can then find the capaci-
tance for a given position of the membrane by solving for
the potential using the finite element method. We express

the capacitance as CðxmÞ ¼ �0A
D cðxmÞ, where cðxmÞ is a

dimensionless number of order unity, which describes the
deviation from a standard parallel plate capacitor.

As an example, we take a SiN membrane of dielectric
constant � ¼ 7:6 and thickness h ¼ 100 nm inserted into a
capacitor with a separation D ¼ 2 �m and dimensions
r ¼ D=4, d ¼ 3D=4, and t ¼ D=4. A simulation with
these values is shown in Fig. 2(b). From this simulation
we extract the values of � � 30D ¼ 60 �m for a distance
of X0 � 0:2D ¼ 0:4 �m. Hence, if the applied voltage
shifts the equilibrium position by xe � X0 � 10 nm
around X0 � 0:2D ¼ 0:4 �m, the coupling constant is
g=! � 0:01 and the system is in the strong-coupling
regime if the Q values of the LC circuit and membrane
exceed 100. Assuming an operating frequency of ! ¼
ð2�Þ1 MHz, an oscillator length x0 ¼ 3 fm, and a capaci-
tor area of A ¼ 0:1 mm2 (consistent with a 1 mm2 mem-
brane), this displacement only requires an applied voltage
on the order of 25 V. If a larger initial separation is
desirable, a similar coupling (g=! � 0:02) could be
achieved if the equilibrium distance is shifted from

xe�0:6D¼1:2�m to X0�0:4D¼0:8�m (��400D¼
800�m for X0 � 0:4D ¼ 0:8 �m) with an applied volt-
age of 450 V.
Cooling the LC circuit.—The membrane may be effi-

ciently cooled via optomechanical coupling between the
radiation pressure force of a cavity field and the position of
the central area of the membrane. The details of this
process have been analyzed by a wide variety of groups
[7]. In essence the effect on the membrane degree of free-
dom â is to induce a damping �m, which is much greater
than the intrinsic damping rate of the membrane �m � �m,
but is limited by the cavity decay rate �m & �. This addi-
tional damping only produces moderate additional quan-
tum fluctuations associated with the vacuum noise of the
light field. We are mainly interested in room temperature
applications where the obtainable Q values are a few
hundreds. Assuming the resolved sideband limit � � !,
the thermal load is then mainly limited by the heating of
the LC circuit and we shall ignore these optical heating
effects. Working with the LC circuit with damping �,
resonant with the membrane (!0 ¼ !m ¼ !), we may
expect an efficient coupling between the optomechanical
system and the LC circuit, provided that g > � such that
we can get excitations out of the system faster than they
leak in.
We use the input-output formalism in the rotating wave

approximation (valid for g � !) to describe this com-
bined mode cooling. The Heisenberg-Langevin equations
for this situation are

_̂a ¼ ��mâþ ffiffiffiffiffiffiffiffiffi
2�m

p
âin � i

g

2
b̂;

_̂b ¼ ��b̂þ ffiffiffiffiffiffi
2�

p
b̂in � i

g

2
â:

In the strong damping limit (�m > g), we can treat the
coupled LC resonator as a perturbation and arrive at

_̂b � �ð�þ �Þb̂þ ffiffiffiffiffiffi
2�

p
b̂in � i

g

2�m

ffiffiffiffiffiffiffiffiffi
2�m

p
âin:

This equation describes the cooling of b̂ through the
membrane-light system with a rate � ¼ g2=4�m. In the
continuous cooling limit, we expect to achieve a thermal

population in b̂ given by

hb̂yb̂i � �

�þ �
nb þ 2�m

g
na;

where na; nb are the original thermal occupation of modes

â and b̂. Typically this population will be dominated by the
heating of the LC circuit (the first term) since the mem-
brane can have a very large Q� 106 [11].
In the mode-resolved, strong-coupling limit, with

!0 ¼ !m ¼ ! and �;�m < g, each of the two normal

modes âþ b̂ and â� b̂ have frequencies !� g=2 and a
damping rate given by the average of the two damping
rates ð�þ �mÞ=2. The optomechanical coupling then
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works independently on each of the two modes. Assuming
again theQ of the membrane to be much higher than theQ
of the LC, a standard argument for optomechanical cooling
[19] leads to a thermal occupation number of �nb=�m.

Comparing the two limits derived above we see that the
minimal thermal occupation is achieved at a cooling laser
power and detuning such that �m � g, where we obtain a
population ��nb=g. The cooling of the membrane is,
however, limited by the cavity decay rate �m & �. Hence
the cooling limit is the larger of �nb=g and �nb=�.

Sensitivity of optical readout of LC circuit.—The cool-
ing identified above realizes an interface between optical
fields and rf excitations of the LC circuits at the single
photon level, and we now turn to a possible application of
this interface. Often LC circuits are used in sensitive
detectors to pick up very small signals [20]. As we will
now show, the sensitivity in such experiments can be
improved by detecting the cooling light leaving the cavity.
This takes advantage of the fact that the homodyne detec-
tion of laser light can be quantum noise limited with near-
unit quantum efficiency, thus avoiding many of the noise
sources present for low frequency signals. To show this we
will work in the strong damping limit identified above
�m > g with the LC circuit tuned into resonance with the
membrane (!0 ¼ !m ¼ !). Again we also assume the
damping of the mechanical motion of the membrane to
be negligible �m � g. In this limit the membrane and the
cavity mediate an effective interaction between the LC

mode b̂ and the optical cavity input or output modes

d̂inðoutÞ with the effective cooling rate � introduced above.

In the rotating wave approximation this situation is de-
scribed by the generic equations

_̂b ¼ �ð�þ �Þb̂þ ifðtÞ þ ffiffiffiffiffiffi
2�

p
b̂in �

ffiffiffiffiffiffi
2�

p
d̂in; (4)

d̂ out ¼ d̂in þ
ffiffiffiffiffiffi
2�

p
b: (5)

Here, we have introduced an incoming signal to be
measured, which is described by fðtÞ; e.g., if the signal is
from a voltage V applied to the system, fðtÞ ¼
�ðC=4@2LÞ1=4VðtÞ.

Suppose that we want to measure the Fourier compo-
nents of the incoming signals fð	Þ detuned by a frequency
	 with respect to the resonance frequency of the LC circuit
!0 within a certain bandwidth j	j & 
!0. This can be
done by splitting the outgoing signal on a beam splitter

[d� ¼ ðd� dbÞ=
ffiffiffi
2

p
, where db is the annihilation operator

for the other mode incident on the beam splitter] and

inferring the two quadratures xfð	Þ ¼ ½fð	Þ þ f�ð	Þ�= ffiffiffi
2

p
and pf ¼ ½fð	Þ � f�ð	Þ�=i ffiffiffi

2
p

from a homodyne detection

of the xþ ¼ ðdþ þ dyþÞ=
ffiffiffi
2

p
[p� ¼ ðd� � dy�Þ=i

ffiffiffi
2

p
] quad-

rature of the dþ (d�) mode. The signal-to-noise ratio for,
e.g., a measurement of the amplitude can be defined
by S ¼ ½hxþð	Þ2i þ hp�ð	Þ2�=2N. Here N describes the
noise hxþð	Þxþð	0Þi ¼ hp�ð	Þp�ð	0Þi ¼ N
ð	� 	0Þ in

the absence of any signal. From the equations of motion,
we find

S ¼ 2�jhfð	Þij2
2��ð2nb þ 1Þ þ ½�2 þ �2 þ 	2�ð2nd þ 1Þ : (6)

Here nd describes the number of thermal excitations in the
field used to probe the circuit, and we assume that the fields
incident on the beam splitter are of the same type such that

hdydi ¼ hdybdbi.
Let us compare our approach to the case where the LC

circuit is readout by homodyne detection with a rf amplifier
assumed to have a similar number of thermal excitations as
the system being measured nd ¼ nb � 1. Disregarding
any additional noise added during the amplification, S is
optimized for � ¼ � and is limited to S ¼ jhfð	Þij2=4�nb
with a detection bandwidth 
! ¼ 2�. In contrast, with the
optical readout, the incoming laser fields can be quantum
noise limited with nd ¼ 0 if light is in a coherent state. In
this case we obtain twice the signal-to-noise ratio S for
� 	 � & �nb. The optimal sensitivity is thus better with
optical detection, even if we assume ideal detection of the
fields in both cases. Such an ideal detection is routinely
achieved by homodyne detection of optical fields with near
unity quantum efficiency, whereas it is hard to achieve for
rf fields. For realistic limited detector efficiencies of rf
fields, the sensitivity may thus be significantly improved
using optical readout. Furthermore, the high sensitivity
with laser cooling is obtained over a much larger band-

width which is determined by 
! ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��nb

p
. In other

words, if, prior to laser cooling, the LC circuit had a highQ
and a narrow bandwidth � that is less than the bandwidth

!0 required for a particular application, laser cooling
allows an increase of the bandwidth with a limited decrease
in the sensitivity (< 3 dB) if 
!0 & 
!. Using regular rf
techniques, an alternative approach would be to increase
the bandwidth by increasing the damping of the circuit, but
this would result in a decrease of the sensitivity by a factor

of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!0=�

p
. Crucially, since optical fields are shot-noise

limited even at room temperature, this measurement setup
does not involve cryogenics.
The potential benefits of this approach—high quantum

efficiency conversion from rf to optical photons, and the
corresponding potential for low temperature detection
of rf signals—are limited by the finite Q values for room
temperature inductors. Appropriate replacements may be
considered, such as crystal resonators or cryogenic super-
conducting resonators. An additional benefit of a cryogenic
setup is the possibility to enter the quantum strong-
coupling limit, g * �nthermal, at which point the conversion
from rf to optical domain can be used as a quantum inter-
face. However, understanding of these features and im-
provements requires further investigation.
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