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We construct traversable wormholes in dilatonic Einstein-Gauss-Bonnet theory in four spacetime

dimensions, without needing any form of exotic matter. We determine their domain of existence, and show

that these wormholes satisfy a generalized Smarr relation. We demonstrate linear stability with respect to

radial perturbations for a subset of these wormholes.
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Introduction.—When the first wormhole, the ‘‘Einstein-
Rosen bridge,’’ was discovered in 1935 [1] as a feature of
Schwarzschild geometry, it was considered a mere mathe-
matical curiosity of the theory. In the 1950s, Wheeler
showed [2] that a wormhole can connect not only two differ-
ent universes but also two distant regions of our own
Universe. However, the dream of interstellar travel shortcuts
was shattered by the following findings: (i) the
Schwarzschild wormhole is dynamic—its ‘‘throat’’ expands
to a maximum radius and then contracts again to zero
circumference so quickly that not even a particle moving
at the speed of light can pass through [3], (ii) the past horizon
of the Schwarzschild geometry is unstable against small
perturbations—the mere approaching of a traveler would
change it to a proper, and thus impenetrable, one [4].

However, in 1988 Morris and Thorne [5] found a new
class of wormhole solutions which possess no horizon, and
thus could be traversable. The throat of these wormholes is
kept open by a type of matter whose energy-momentum
tensor violates the energy conditions. A phantom field, a
scalar field with a reversed sign in front of its kinetic term,
was shown to be a suitable candidate for the exotic type of
matter necessary to support traversable wormholes [6].

In order to circumvent the use of exotic matter to obtain
traversable wormholes, one is led to consider generalized
theories of gravity. Higher-curvature theories of gravity are
suitable candidates to allow for the existence of stable
traversable wormholes. In particular, the low-energy het-
erotic string effective theory [7,8] has provided the frame-
work for such a generalized gravitational theory in four
dimensions where the curvature termR of Einstein’s theory
is supplemented by the presence of additional fields as well
as higher-curvature gravitational terms. The dilatonic
Einstein-Gauss-Bonnet (DEGB) theory offers a simple
version that contains, in addition to R, a quadratic curva-
ture term, the Gauss-Bonnet (GB) term, and a scalar field
(the dilaton) coupling exponentially to the GB term, so that
the latter has a nontrivial contribution to the four-
dimensional field equations.

Here we investigate the existence of wormhole solutions
in the context of the DEGB theory. No phantom scalar
fields or other exotic forms of matter are introduced.
Instead, we rely solely on the existence of the higher-
curvature GB term that follows naturally from the com-
pactification of the ten-dimensional heterotic superstring
theory down to four dimensions.
DEGB theory.—We consider the following effective

action [9–12] motivated by the low-energy heterotic string
theory [7,8]

S¼ 1

16�

Z
d4x

ffiffiffiffiffiffiffi�g
p �

R�1

2
@��@��þ�e���R2

GB

�
; (1)

where� is the dilaton field with coupling constant �,� is a
positive numerical coefficient given in terms of the Regge
slope parameter, and R2

GB¼R����R
�����4R��R

��þR2

is the GB correction.
Here we consider only static, spherically symmetric

solutions of the field equations. Hence we may write the
spacetime line element in the form [9]

ds2 ¼ �e�ðrÞdt2 þ e�ðrÞdr2 þ r2ðd	2 þ sin2	d’2Þ: (2)

In [9] it was demonstrated that DEGB theory admits
static black hole solutions, based on this line element. But
it was also observed that, besides the black hole solutions,
the theory admits other classes of solutions. One of the
examples presented showed a pathological behavior for the
grr metric component and the dilaton field at a finite radius
r ¼ r0 but had no proper horizon with gtt being regular for
all r � r0. Since the solution did not exhibit any singular
behavior of the curvature invariants at r0, it was concluded
that the pathological behavior was due to the choice of the
coordinate system.
Here we argue that this class of asymptotically flat

solutions is indeed regular and represents a class of worm-
holes with r0 being the radius of the throat. Indeed, the
coordinate transformation r2 ¼ l2 þ r20 leads to a metric

without any pathology,
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ds2 ¼ �e2�ðlÞdt2 þ fðlÞdl2 þ ðl2 þ r20Þðd	2 þ sin2	d’2Þ:
(3)

In terms of the new coordinate, the expansion at the

throat l ¼ 0, yields fðlÞ ¼ f0 þ f1lþ � � � , e2�ðlÞ ¼
e2�0ð1þ �1lÞ þ � � � , �ðlÞ ¼ �0 þ�1lþ � � � , where fi,
�i, and �i are constant coefficients. All curvature invari-
ants, including the GB term, remain finite for l ! 0.

The expansion coefficients f0, �0, and �0 are free
parameters, as well as the radius of the throat r0 and the
value of �—the value of the constant � is set to 1 in the
calculations. The set of equations remains invariant under

the simultaneous changes � ! �þ�� and ðr; lÞ !
ðr; lÞe���=2. The same holds for the changes � ! k� and
� ! �þ lnk. As a result, out of the parameter set (�, r0,
�0) only one is independent: we thus fix the value of�0, in
order to have a zero value of the dilaton field at infinity,
and create a dimensionless parameter �=r20 out of the

remaining two. Also, since only the derivatives of the
metric function � appear in the equations of motion, we
fix the value of �0 to ensure asymptotic flatness at radial
infinity. Note that force-free wormhole solutions, i.e., with
�ðlÞ � 0, cannot exist with a nonphantom scalar, as was
shown in [13].

Of particular interest is the constraint on the value of the
first derivative of the dilaton field at the throat, which
originates from the diagonalization of the dilaton and
Einstein equations in the limit l ! 0. In terms of the
expansions it translates into a constraint on the value of
the parameter �1, i.e.,

�2
1 ¼

f0ðf0 � 1Þ
2��2e���0½f0 � 2ðf0 � 1Þ �

r2
0

e���0� : (4)

Since the left-hand side of the above equation is positive-
definite, we must impose the constraint f0 � 1. This con-
straint introduces a boundary in the phase space of the
wormhole solutions. The expression inside the square
brackets in the denominator remains positive and has no
roots if a=r20 < e�0=2—this inequality is automatically

satisfied for the set of solutions presented.
For l ! 1 we demand asymptotic flatness for the

two metric functions and a vanishing dilaton field. Then,
the corresponding asymptotic expansion yields � !
�M

l þ � � � , f ! 1þ 2M
l þ � � � , � ! � D

l þ � � � , where

M and D are identified with the mass and dilaton charge
of the wormhole, respectively. Unlike the case of the black
hole solutions [9], the parameters M and D characterizing
the wormholes at radial infinity are not related, in agree-
ment with the classification of this group of solutions as
two-parameter solutions.

Wormhole properties.—A general property of a worm-
hole is the existence of a throat, i.e., a surface of minimal
area (or radius for spherically symmetric spacetimes).
Indeed, this property is implied by the form of the line

element (3) above, with fð0Þ and �ð0Þ finite. To cast this
condition in a coordinate independent way, we define the

proper distance from the throat by 
 ¼ R
l
0

ffiffiffiffiffiffi
gll

p
dl0 ¼R

l
0

ffiffiffiffiffiffiffiffiffiffi
fðl0Þp

dl0. Then the conditions for a minimal radius
dr
d
 jl¼0 ¼ 0, d2r

d
2
jl¼0 > 0 follow from the substitution of

the expansion at the throat.
In order to examine the geometry of the space manifold,

we consider the isometric embedding of a plane passing
through the wormhole. Choosing the 	 ¼ �=2 plane, we
set fðlÞdl2 þ ðl2 þ r20Þd’2 ¼ dz2 þ d�2 þ �2d’2, where

fz; �;’g are a set of cylindrical coordinates in the three-
dimensional Euclidean space R3. Regarding z and � as
functions of l, we find �ðlÞ and zðlÞ. We note that the
curvature radius of the curve f�ðlÞ; zðlÞg at l ¼ 0 is given
by R0 ¼ r0f0. From this equation we obtain an indepen-
dent meaning for the parameter f0 as the ratio of the
curvature radius and the radius of the throat, f0 ¼ R0=r0.
Essential for the existence of the wormhole solution is

the violation of the null energy condition T��n
�n� � 0,

for any null vector field n�. For spherically symmet-
ric solutions, this condition can be expressed as �G0

0 þ
Gl

l � 0 and �G0
0 þG	

	 � 0, where the Einstein equations

have been employed. The null energy condition is violated
in some region if one of these conditions does not hold. By
using the expansion of the fields near the throat, we find
that there

½�G0
0 þGl

l�l¼0 ¼ � 2

f0r
2
0

< 0; (5)

provided e2�ð0Þ � 0, i.e., in the absence of a horizon.
The wormhole solutions satisfy a Smarr-like mass

formula

M ¼ 2Sth
�

2�
� D

2�

þ 1

8��

Z ffiffiffiffiffiffiffi�g
p

gll
d�

dl
ð1þ 2��2e��� ~RÞdx2;

where � denotes the surface gravity at the throat and

Sth ¼ 1

4

Z ffiffiffi
h

p ð1þ 2�e��� ~RÞdx2:

Here h�� is the induced spatial metric on the throat, ~R the

scalar curvature of h, and the integral is evaluated at l ¼ 0.
Thus the known DEGB mass formula for black holes [12]
is augmented by a contribution which may be interpreted
as a modified throat dilaton charge, where the GB modifi-
cation is of the same type as the GB modification of the
area (or entropy, in case of black holes).
Numerical results.—For the numerical calculations we

use the line element (3). At l ¼ 0 regularity requires
relation (4) to hold with fð0Þ ¼ f0 or �ð0Þ ¼ �0 in order
to obtain a unique solution. Note that f ! 1 for l ! 1 is
always satisfied. Thus the asymptotic boundary conditions
read � ! 0 and � ! 0.
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The field equations, reducing to a system of ODE’s,
were solved for 1:0001 � f0 � 20:0 fixing � ¼ 1.
Wormhole solutions were found for every value of �=r20
considered up to 0.13—this translates into a lower bound
on the radius of the throat r0 that can be arbitrarily large. In
Fig. 1, we show the metric and dilaton functions for an
indicative set of wormhole solutions. In Fig. 2, we present
the isometric embedding of the solution with �=r20 ¼ 0:02
and f0 ¼ 1:1.

In Fig. 3 we exhibit the domain of existence of the
wormhole solutions. Here we show the scaled area of the
throat A=16�M2 versus the scaled dilaton charge D=M for
several values of �=r20. We observe that the domain of

existence is bounded by three curves indicated by dots,
crosses, and asterisks. The boundary indicated by asterisks
corresponds to the limit f0 ¼ 1 and coincides with the
black hole curve since �g00ðr0Þ tends to zero in this limit.
The boundary indicated by crosses corresponds to the limit
f0 ! 1. In this limit, the massM and the dilaton chargeD
assume finite values. The same holds for the redshift
function, the dilaton field, and all curvature invariants at

the throat. The third boundary, indicated by dots, is char-
acterized by curvature singularities; it emerges when
branches of solutions with fixed �=r20 terminate at singular

configurations with the derivatives of the functions devel-
oping a discontinuity at some point lcrit outside the throat.
Stability.—A crucial requirement for traversable worm-

hole solutions is their stability. We therefore assess the
stability of the DEGB wormhole solutions with respect to
radial perturbations. We allow the metric and dilaton
functions to depend on both l and t, and we decompose
them into an unperturbed part and the perturbations:

~�ðl; tÞ ¼ �ðlÞ þ 
��ðlÞei�t, ~fðl; tÞ ¼ fðlÞ þ 
�fðlÞei�t,
~�ðl; tÞ ¼ �ðlÞ þ 
��ðlÞei�t, where 
 is considered as
small. Substituting the above in the (time-dependent)
Einstein and dilaton equations and linearizing in 
, we
obtain a system of linear ODEs for the functions ��ðlÞ,
�fðlÞ, and ��ðlÞ.
Rearranging appropriately the system of ODEs, we de-

rive a decoupled second-order equation for ��,

ð��Þ00 þ q1ð��Þ0 þ ðq0 þ q��
2Þ�� ¼ 0; (6)

where q1, q0, and q� depend on the unperturbed solution.
All coefficients take up constant values as l ! 1 and, in
order to ensure normalizability, �� is demanded to vanish
in that limit. However, while q� is bounded at l ¼ 0, q1
and q0 diverge as 1=l. To avoid this singularity, we
consider the transformation �� ¼ FðlÞc ðlÞ, where FðlÞ
satisfies F0=F ¼ �q1ðlÞ=2. This yields

c 00 þQ0c þ �2q�c ¼ 0; (7)
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FIG. 1 (color online). The metric and dilaton functions for
f0 ¼ 1:1 (red or solid), 1.5 (green or dashed), 2.0 (blue or
dotted), and �=r20 ¼ 0:02, versus l.
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FIG. 2 (color online). Isometric embedding for a wormhole
solution for �=r20 ¼ 0:02 and f0 ¼ 1:1.
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FIG. 3 (color online). The scaled area of the throat versus the
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where Q0 ¼ �q01=2� q21=4þ q0 is bounded at l ¼ 0.
Then, for regular, normalizable solutions, c has to vanish
both asymptotically and at l ¼ 0.

We solved the ODEs together with the normalization
constraint for several values of �=r20 and f0. A solution

exists only for certain values of the eigenvalue �2. In
Fig. 4, we exhibit the negative modes of families of worm-
hole solutions, which are thus unstable. However, there is
also a region in parameter space, where no negative mode
exists, i.e., a region where the DEGB wormhole solutions
are linearly stable with respect to radial perturbations. The
different solutions are also marked in the domain of ex-
istence (Fig. 3).

Junction conditions.—When we extend the wormhole
solutions to the second asymptotically flat part of the
manifold (l ! �1) in a symmetric way, jumps appear
in the derivatives of the metric and dilaton functions at
l ¼ 0. These can be attributed to the presence of
matter at the throat of the wormhole. Introducing the

action
Rð
1 þ 
02�e

��0 �RÞ
ffiffiffiffiffiffiffi
� �h

p
d3x, where �hab is the

ð2þ 1Þ-dimensional induced metric on the throat and �R
the corresponding Ricci scalar, the junction conditions take
the form

�� 
0

4�e��0

r20
� 
1 ¼ 8�e��0

r20

�0
0ffiffiffiffiffi
f0

p ; (8)

pþ 
1 ¼ 2�0
0ffiffiffiffiffi
f0

p ; (9)


0

4�e��0

r20
þ �dil

2
¼

�
�0

0 þ
8�e��0

r20
�0
0

�
1ffiffiffiffiffi
f0

p : (10)

We have also assumed that the matter at the throat takes the
form of a perfect fluid and a dilaton charge density �dil. A
simple numerical analysis shows that the junction condi-
tions can be easily satisfied for normal matter with positive
energy density and pressure, for appropriately chosen con-
stants 
1 and 
0. The presence of �dil ensures that the
stability considerations are not affected by the matter on
the throat.
Conclusions.—Traversable wormholes do not exist in

general relativity, unless some exotic matter is introduced.
However, if string theory corrections are taken into account
the situation changes dramatically. Here we investigated
wormhole solutions in DEGB theory without introducing
exotic matter. We determined the domain of existence
and showed linear stability with respect to radial perturba-
tions for a subset of solutions. Since the radius of the
throat is bounded from below only, the wormholes can be
arbitrarily large. Astrophysical consequences will be ad-
dressed in a forthcoming paper as well as the existence of
stationary rotatingwormhole solutions in the DEGB theory.
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