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The ability of entangled states to act as a resource for teleportation is linked to a property of the fully

entangled fraction. We show that the set of states with their fully entangled fraction bounded by a

threshold value required for performing teleportation is both convex and compact. This feature enables the

existence of Hermitian witness operators, the measurement of which could distinguish unknown states

useful for performing teleportation. We present an example of such a witness operator illustrating it for

different classes of states.
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Introduction.—Quantum information processing is now
widely recognized as a powerful tool for implementing
tasks that cannot be performed using classical means [1].
A large number of algorithms for various information
processing tasks such as super dense coding [2], teleporta-
tion [3] and key generation [4] have been proposed and
experimentally demonstrated. At the practical level infor-
mation processing is implemented by manipulating states
of quantum particles, and it is well known that not all
quantum states can be used for such purposes. Hence,
given an unknown state, one of the most relevant issues
here is to determine whether it is useful for quantum
information processing.

The key ingredient for performing many information
processing tasks is provided by quantum entanglement.
The experimental detection of entanglement is facilitated
by the existence of entanglement witnesses [5,6] which are
Hermitian operators with at least one negative eigenvalue.
The existence of entanglement witnesses is a consequence
of the Hahn-Banach theorem in functional analysis [7,8]
providing a necessary and sufficient condition to detect
entanglement. Motivated by the nature of different classes
of entangled states, various methods have been suggested
to construct entanglement witnesses [9–12]. Study of en-
tanglement witnesses [13] has proceeded in directions such
as the construction of optimal witnesses [9,11], Schmidt
number witnesses [14], and common witnesses [15]. The
possibility of experimental detection of entanglement
through the measurement of expectation values of witness
operators for unknown states is facilitated by the decom-
position of witnesses in terms of Pauli spin matrices for
qubits [16] and Gell-Mann matrices in higher dimensions
[17]. For macroscopic systems the properties of thermody-
namic quantities provide a useful avenue for detection of
entanglement [18].

Teleportation [3] is a typical information processing task
where at present there is intense activity in extending the
experimental frontiers [19]. However, it is well-known that

not all entangled states are useful for teleportation. For
example, while the entangled Werner state [20] in 2 � 2
dimensions is a useful resource [21], another class of
maximally entangled mixed states [22], as well as other
nonmaximally entangled mixed states achieve a fidelity
higher than the classical limit only when their magnitude
of entanglement exceeds a certain value [23]. The problem
of determining states useful for teleportation becomes
conceptually more involved in higher dimensions where
bound entangled states [24] also exist.
The motivation for this study is to enquire how to

determine whether an unknown entangled state could be
used as a resource for performing information processing
tasks. In the present work we consider this question for the
specific task of quantum teleportation. We propose and
demonstrate the existence of measurable witness operators
connected to teleportation, by making use of a property of
entangled states, viz, the fully entangled fraction (FEF)

FIG. 1. The set S ¼ f�:Fð�Þ � 1
dg is convex and compact, and

using the Hahn-Banach theorem it follows that any state useful
for teleportation can be separated from the states not useful for
teleportation by a hyperplane, thus providing for the existence of
a witness for teleportation.
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[25,26] which can be related to the efficacy of teleporta-
tion. In spite of the conceptual relevance of the FEF as a
characteristic trait of entangled states [27], its actual deter-
mination could be complicated for higher dimensional
systems [28,29]. Our proof of the existence of witnesses
connected to a relevant threshold value for the FEF enables
us to construct a suitable witness operator for teleportation,
as is illustrated with certain examples.

Proof of existence of witness.—The fully entangled frac-
tion (FEF) [26] is defined for a bipartite state � in d � d
dimensions as

Fð�Þ ¼ maxUhcþjUy � I�U � Ijcþi (1)

where jcþi ¼ 1ffiffi
d

p P
d�1
i¼0 jiii and U is a unitary operator. A

quantum channel is useful for teleportation if it can provide
a fidelity higher than what can be done classically. The
fidelity depends on the FEF of the state; e.g., a state in d �
d dimensions works as a teleportation channel if its FEF
> 1

d [26–28].

Here we propose the existence of a Hermitian operator
which serves to distinguish between states having FEF
higher than a given threshold value from other states.
FEF > 1

d is a benchmark which measures the viability of

quantum states in teleportation. Let us consider the set S of
states having FEF � 1

d . A special geometric form of the

Hahn-Banach theorem in functional analysis [7,8] states
that if a set is convex and compact, then a point lying
outside the set can be separated from it by a hyperplane.
The existence of entanglement witnesses are indeed also an
outcome of this theorem [5,6]. We now present the proof
that the set S of states with FEF � 1

d is indeed convex and

compact, so that the separation axiom in the form of the
Hahn-Banach theorem could be applied in order to dem-
onstrate the existence of Hermitian witness operators for
teleportation.

Proposition: The set S ¼ f�:Fð�Þ � 1
dg is convex and

compact. Proof: The proof is done in two steps. (i) We first
show that S is convex. Let �1, �2 2 S. Therefore,

Fð�1Þ � 1

d
; Fð�2Þ � 1

d
: (2)

Consider �c ¼ ��1 þ ð1� �Þ�2, where � 2 ½0; 1� and

Fð�cÞ ¼ hcþjUy
c � I�cUc � Ijcþi. Now, Fð�cÞ ¼

�hcþjUy
c � I�1Uc � Ijcþi þ ð1� �ÞhcþjUy

c � I�2Uc �
Ijcþi. Let Fð�iÞ ¼ hcþjUy

i � I�iUi � Ijcþi, (i ¼ 1, 2).
This is possible since the group of unitary matrices is
compact; hence, the maximum will be attained for a
unitary matrix U. It follows that Fð�cÞ � �Fð�1Þþ
ð1� �ÞFð�2Þ. Using Eq. (2) we have

Fð�cÞ � 1

d
(3)

Thus, �c lies in S, and hence, S is convex. (ii)We now show
that S is compact. Note that in a finite dimensional Hilbert
space, in order to show that a set is compact it is enough to

show that the set is closed and bounded. The set S is
bounded as every density matrix has a bounded spectrum,
i.e., eigenvalues lying between 0 and 1. In order to prove
that the set S is closed, consider first the following lemma.
Lemma: Let A and B be two matrices of size m� n and
n� r respectively. Then kABk � kAkkBk, where the

norm of a matrix A is defined as kAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrAyA

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

P
j jAijj2

q
. Proof of the lemma: Let

A ¼

A1

A2

:

:

Am

0
BBBBBBBB@

1
CCCCCCCCA

and B ¼ ½Bð1ÞBð2Þ . . .BðrÞ�, where Ai’s are row vectors of

size n and BðjÞ’s are column vectors of size n respectively.
Using the Cauchy-Schwarz inequality, it follows that

jðABÞijj ¼ jAiB
ðjÞj � kAikkBðjÞk. Therefore, one has

kABk2 ¼ Xm
i¼1

Xr
j¼1

jðABÞijj2 �
Xm
i¼1

Xr
j¼1

kAik2kBðjÞk2 (4)

The r.h.s of the above inequality can be expressed asP
m
i¼1 kAik2 Pr

j¼1 kBðjÞk2 ¼ kAk2kBk2, from which it fol-

lows that kABk � kAkkBk.
For any two density matrices �a and �b, assume the

maximum value of FEF is obtained at Ua and Ub

respectively, i.e., Fð�aÞ ¼ hcþjUy
a � I�aUa � Ijcþi

and Fð�bÞ ¼ hcþjUy
b � I�bUb � Ijcþi. Therefore, we

have Fð�aÞ � Fð�bÞ ¼ hcþjUy
a � I�aUa � Ijcþi �

hcþjUy
b � I�bUb � Ijcþi from which it follows

that Fð�aÞ � Fð�bÞ � hcþjUy
a � I�aUa � Ijcþi �

hcþjUy
a � I�bUa � Ijcþi since hcþjUy

a � I�bUa �
Ijcþi � hcþjUy

b � I�bUb � Ijcþi. Hence, Fð�aÞ �
Fð�bÞ � hcþjUy

a � Ið�a � �bÞUa � Ijcþi, implying

Fð�aÞ�Fð�bÞ� jhcþjUy
a �Ið�a��bÞUa�Ijcþij: (5)

Now, using the above lemma, one gets Fð�aÞ � Fð�bÞ �
khcþjkkUy

a � Ikkð�a � �bÞkkUa � Ikkjcþik, or
Fð�aÞ � Fð�bÞ � C2K2

1k�a � �bk, where C, K1 are posi-
tive real numbers. The last step follows from the fact that
khcþjk ¼ C. Since the set of all unitary operators is
compact, it is bounded, and thus for any U, kU � Ik �
K1. Similarly Fð�bÞ � Fð�aÞ � C2K2

1k�b � �ak ¼
C2K2

1k�a � �bk. So finally, one may write

jFð�aÞ � Fð�bÞj � C2K2
1k�a � �bk: (6)

This implies that F is a continuous function. Moreover, for
any density matrix �, with Fð�Þ 2 ½ 1

d2
; 1�, one has Fð�Þ ¼

1 iff � is a maximally entangled pure state, and Fð�Þ ¼ 1
d2

iff � is the maximally mixed state [28]. For the set S in our
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consideration Fð�Þ 2 ½ 1
d2
; 1d�. Hence, S ¼ f�:Fð�Þ � 1

dg ¼
F�1ð½ 1

d2
; 1d�Þ, is closed [8]. This completes the proof of our

proposition that the set S ¼ f�:Fð�Þ � 1
dg is convex and

compact.
It now follows from the Hahn-Banach theorem [7,8],

that any � =2 S can be separated from S by a hyperplane. In
other words, any state useful for teleportation can be
separated from the states not useful for teleportation by a
hyperplane and thus allows for the definition of a witness
(Fig. 1). The witness operator, if so defined, identifies the
states which are useful in the teleportation protocol, i.e.,
provides a fidelity higher than the classical optimum.

A witness operator for teleportation.—A Hermitian op-
erator W may be called a teleportation witness if the
following conditions are satisfied: (i) TrðW�Þ � 0, for all
states � which are not useful for teleportation.
(ii) TrðW�Þ< 0, for at least one state � which is useful
for teleportation. We propose a Hermitian operator for a
d � d system of the form (using jcþi ¼ 1ffiffi

d
p Pd�1

i¼0 jiii)

W ¼ 1

d
I � jcþihcþj (7)

In order to prove that W is indeed a witness operator, we
first show that the operator W gives a non-negative expec-
tation over all states which are not useful for teleportation.
Let � be an arbitrary state chosen from the set S not useful
for teleportation, i.e., � 2 S. Hence,

Tr ðW�Þ ¼ 1

d
� hcþj�jcþi (8)

from which it follows that TrðW�Þ � 1
d �maxUhcþjUy �

I�U � Ijcþi. Now, using the definition of the FEF, Fð�Þ
from Eq. (1), and the fact that � 2 S, one gets

Tr ðW�Þ � 0 (9)

Our task now is to show that the operatorW detects at least
one entangled state �which is useful for teleportation, i.e.,
TrðW�Þ< 0, which we do by providing the following
illustrations.

Let us first consider the isotropic state

�� ¼ �jcþihcþj þ 1� �

d2
I

�
� 1

d2 � 1
� � � 1

�
(10)

The isotropic state is entangled 8 �> 1
dþ1 [30]. Now,

TrðW��Þ ¼ ðd�1Þð1��ðdþ1ÞÞ
d2

, from which it follows that

TrðW��Þ< 0, when �> 1
dþ1 . Therefore, all entangled

isotropic states are useful for teleportation. The same con-
clusion was obtained in Ref. [28] on explicit calculation of
the FEF for isotropic states. We next consider the general-
ized Werner state [20,31] in d � d given by

�wer ¼ ð1� vÞ I

d2
þ vjc dihc dj; (11)

where 0 � v � 1 and jc di ¼
P

d�1
i¼0 �ijiii, withP

ij�ij2 ¼ 1, for which one obtains TrðW�werÞ ¼
1
d � 1�v

d2
� v

d

P
d�1
i¼0 �i

P
d�1
i¼0 ��

i . The witness W detects

those Werner states which are useful for teleportation,
i.e., TrðW�werÞ< 0, which is the case when

1

d
� 1� v

d2
� v

d

Xd�1

i¼0

�i

Xd�1

i¼0

��
i < 0: (12)

In 2 � 2 dimensions with �i ¼ 1=
ffiffiffi
2

p
, one gets

TrðW�werÞ ¼ 1�3v
4 < 0, when v > 1

3 . Thus, all entangled

Werner states are useful for teleportation, a result which is
well-known [21].
Now, consider another class of maximally entangled

mixed states in 2 � 2 dimensions, which possess the maxi-
mum amount of entanglement for a given purity [22]:

�MEMS ¼

hðCÞ 0 0 C=2

0 1� 2hðCÞ 0 0

0 0 0 0

C=2 0 0 hðCÞ

0
BBBBB@

1
CCCCCA ; (13)

where, hðCÞ ¼ C=2 for C � 2=3, and hðCÞ ¼ 1=3 for C<
2=3, with C the concurrence of �MEMS. Here we obtain
TrðW�MEMSÞ ¼ 1

2 � hðCÞ � C
2 . It follows that

TrðW�MEMSÞ � 0 when 0 � C � 1
3 , implying that for a

magnitude of the entanglement in the above range, the state
�MEMS is not useful for teleportation. But, for C> 1

3 , the

state �MEMS is suitable for teleportation, as one obtains
TrðW�MEMSÞ< 0 in this case, confirming the results de-
rived earlier in the literature [23]. However, as expected
with any witness, our proposed witness operator may fail to
identify certain other states that are known to be useful for
teleportation. For example, the state (for j�i ¼ 1ffiffi

2
p ðj01i þ

j10iÞ and 0 � a � 1)

�� ¼ aj�ih�j þ ð1� aÞj11ih11j (14)

was recently studied in the context of quantum discord
[32]. This class of states is useful for teleportation but the
witness W is unable to detect it as TrðW��Þ ¼ a

2 � 0.

Let us now briefly discuss the measurability of the wit-
ness operator. For experimental realization of the witness it
is necessary to decompose the witness into operators that
can be measured locally, i.e, a decomposition into projec-
tors of the formW ¼ P

k
i¼1 cijeiiheij � jfiihfij [13,16]. For

implementation using polarized photons as in [33], one

may take jHi ¼ j0i, jVi ¼ j1i, jDi ¼ jHiþjViffiffi
2

p , jFi ¼
jHi�jViffiffi

2
p , jLi ¼ jHiþijViffiffi

2
p , jRi ¼ jHi�ijViffiffi

2
p as the horizontal, ver-

tical, diagonal, and the left and right circular polarization
states, respectively. Using a result given in [34], our wit-
ness operator can be recast for qubits into the required
form, given by
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W ¼ 1
2ðjHVihHVj þ jVHihVHj � jDDihDDj � jFFi
� hFFj þ jLLihLLj þ jRRihRRjÞ: (15)

Using this technique for an unknown two-qubit state �, the
estimation of hWi requires three measurements [34], as is
also evident from the decomposition of our witness opera-
tor for qubits in terms of Pauli spin matrices, i.e.,W ¼ 1

4 �½I � I � �x � �x þ �y � �y � �z � �z�, which is far less

than the measurement of 15 parameters required for full
state tomography [35]. In higher dimensions, the witness
operator may be decomposed in terms of Gell-Mann ma-
trices [17], and this difference further increases with the
increase in dimensions. Therefore, the utility of the witness
operator is indicated as compared to full state tomography
when discrimination of useful entangled states for per-
forming teleportation is required.

Before concluding, it may be noted that is possible to
relate the FEF (1) with the maximum fidelity for other
information processing tasks, such as super dense coding
and entanglement swapping [36]. In the generalized dense
coding for d � d systems, one can use a maximally en-
tangled state j�i to encode d2=2 bits in d2 orthogonal
states ðI �UiÞj�i [37]. If the maximally entangled state
is replaced with a general density operator, the dense
coding fidelity is defined as an average over the d2 results.
A relation between the maximum fidelity Fmax

DC of dense

coding and the FEF was established for d � d systems to be
Fmax
DC ¼ F. Similarly, for two-qubit systems the maximum

fidelity of entanglement swapping [38] Fmax
ES is also related

to the FEF by Fmax
ES ¼ F [36]. However, teleportation is a

different information processing task as compared to dense
coding where F > 1=d does not guarantee a higher than
classical fidelity [39]. Hence, it is not possible to apply the
above witness (7) to super dense coding and entanglement
swapping.

Conclusions.—To summarize, in this work we have
proposed a framework for discriminating quantum states
useful for performing teleportation through the measure-
ment of a Hermitian witness operator. The ability of an
entangled state to act as a resource for teleportation is
connected with the fully entangled fraction of the state.
The estimation of the fully entangled fraction is difficult in
general, except in the case of some known states. We have
shown that the set of states having their fully entangled
fraction bounded by a certain threshold value required for
teleportation is both convex and compact. Exploiting this
feature we have demonstrated the existence of a witness
operator for teleportation. The measurement of the expec-
tation value of the witness for unknown states reveals
which states are useful as resource for performing tele-
portation. We have provided some illustrations of the
applicability of the witness for isotropic and Werner states
in d � d dimensions, and another class of maximally en-
tangled mixed states for qubits. The measurability of such
a witness operator requires determination of a much lesser

number of parameters in comparison to state tomography
of an unknown state, thus signifying the practical utility of
our proposal. It would be interesting to explore the possi-
bility of existence of witnesses for various other informa-
tion processing tasks, as well. In this context further studies
on finding optimal and common witnesses are called for.
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